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Stupecki's Rule for Diagrammatic Reasoning

ABSTRACT. In this contribution we pursue a simple goal:stow that Stupecki's rule
can be applied to a diagrammatic interpretatioaytibgistic. With this goal we expect
to bring more attention on Stupecki's ra@led suggest that diagrammatic systems are,
by no means, irrational approaches to logic.
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1. Introduction

According to Woléski and Zygmunt, when Jerzy Stupecki (1904-
1987) passed away, those who witnessed his depavery well could
have the impression that the Warsaw school of loga&sed to exist too:
Stupecki was the last Warsaw logician alive whodvelgis scientific career
in the golden years of Polish logic [Wakki & Zygmunt, 1989]. His
contributions were many and substantial: from mealyped logics to
didactics of logic, his interests were wide andythecluded a particular
one in syllogistic, just as his thesis advisor, tlakasiewicz.

Within Slupecki's advances to syllogistic we fingbarticular rule that
bears his name, a rule that allowed him to makeesdiscoveries that, in
the opinion of Lukasiewicz himself, were the masportant in syllogistic
since Aristotle [Lukasiewicz, 1970]. In this cobtition we pursue a simple
goal: to show that Stupecki's rule can be appled tiagrammatic inter-
pretation of syllogistic. With this goal we expéatbring more attention on
Stupecki's rulg(SR from now onkand suggest that diagrammatic systems
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are, by no means, irrational approaches to logigeimeral, and syllogistic
in particular, for such systems provide equivalérgical procedures
however different from traditional sentential apgrbes.

To reach our goal we have organized this papeheénniext way. In
Section 2 we begin with a brief exposition of SR Section 3 we develop
some ideas behind the notion of diagrammatic ldgioasequence. Then,
in Section 4, we explain some general aspects diddgrammatic system
and, after that, we propose how SR can be apmiéd t

2. Stupecki's rule

In a controversial and groundbreaking work, tukagie [1951]
showed that Aristotelian syllogistic could be axatmally developed on
the grounds of standard propositional calculusstuibion and detachment
rules (for asserted and rejected expressions)samg axioms of assertion
and rejection. His axiomatization can be summariaehble 1

Table 1.tukasiewicz's axiomatization for Aristotelian sgistic

Axioms Rules
Uaa Substitution: Ifa is an asserted expression, then any
laa expression produced fromby a valid substitution is
Assertion also an asserted expression.
CKUcbUacUab .
Detachment: If @[3 anda are asserted expressions,
CKUcblcalab . .
thenf is an asserted expression.

L A categorical propositioris a proposition composed by two terms, a quanding
a quality. The subject and the predicate of a psdjmm are calledermsand while the
term-schema a denotes the subject term of the priopm, the term-schema b denotes the
predicate. Following tukasiewicz's notation, tipgantity may be either universal (U) or
particular (I). And finally, thequality may be either affirmative or negative (N). Withisth
notation the four categorical propositions are espnted by Uab (All a is b), NUab
(Some a is not b), lab (Some a is b), Nlab (No)isC and K stand for implication and
conjunction, respectively.
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Substitution: I} is a substitution ofa , andp is
CKUbcUaclab rejectedo must be rejected too.
CKNIbcNlaclab | Detachment: If the implicationd is asserted, by
is rejectedp must be rejected too.

Rejection

From the axioms and rules of assertion it is pdssib derive the
fundamental tenets of Aristotelian syllogistic: gguare of opposition and
all the valid syllogisms. On the other hand, frdme aaxioms and rules of
rejection all the invalid moods of syllogistic che rejected. However,
according to tukasiewicz [1951], this axiomatic eggrh does not suffice
to describe Aristotelian syllogistic because:

[...] there exist significant expressions, for ingt@arClabCNAabAba, which can

neither be proved by our axioms and rules of assemor disproved by our

axioms and rules of rejection. | call such exp@ssiundecidable with respect to
our basis. Undecidable expressions may be eitberitr the Aristotelian logic or

false. The expression ClabCNAabAba is, of courdsefdp. 100

Under this context of (un)decidability, tukasiewiqzosed two
problems:i) is the number of undecidable expressions finkte@ ii) is it
possible to complete the axiomatic system desciitvdéble 1 so that we
can decide whether a given expression has to letedsor rejected? In
On Aristotelian SyllogisticStupecki [1951] answered both questions: the
former, negatively (87, Theorem Ill); the lattefireatively (89, Theorem V).
The rule that bears his name is a result of ansgéhiese questions.

In 82, Definition V, Stupecki describes what a obgel expression is. A
rejected expressiois a meaningful expression of Aristotelian sylkigi
that is rejected w.r.t. the expression:

CKUbcUacl ab

Then, according to 88, Definition XIV, lerange rejected expression
is defined as follows: lét be any natural numbenx; anda, any general-

2 In this excerpt, the expression ClabCNAabAba rhestead as ClabNUabUba.
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or particular-affirmative expressions, ar@ny simple expression; then a
k-range rejected expression is, ferl, any meaningful expression of
Aristotelian syllogistic which is a rejected exmi®® according to
Definition V, and also any expression having therfo

(A) C*K*NF o NFaox
provided the expressions
(B) C*Na1x and (C) C*Nfax

are rejected according to Definition V; and fler1l, any meaningful
expression which is rejected w.r.t. any set of nmegnl expressions, every
member of which is a rejected of a lower range thamd also any expres-
sions (B) and (C) are rejected expressions of atayeer thark.

With the aid of these definitions—and of coursejeotresults that
would require more space than we have—, Stupeckeldped a rule that
today bears his name (89, Proposition Ill): if gressions (B) and (C)
are both false, then expression (A) is also fdtzanally:

(SR) If *Cay and *Cpy, then *CaCpy,

that is to say, that ift and 3 are simple negative expressions grid an
elementary expression, thenGfty and CBy are rejected, the@aCBy must
be rejected too (* represents the notion of rejedti

When the axiomatization for Aristotelian syllogisihowed in Table 1
is modified by replacing the second axiom of regectwith SR,
Aristotelian syllogistic can be proved to be conpland decidable. We
think it is possible to do something similar fordagrammatic system
capable of representing syllogistic.

3. Diagrams and diagrammatic logical consequence
But before we approach such possibility, we woulke to dedicate

some time to argue that diagrammatic logical systean be defined in a
formal fashion and that we can describe a well bethanotion of
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diagrammatic logical consequence between diagramd;in order to do
that, we would like to introduce diagrams by payitention to their
expressive power.

This expressive power is something pop cultureadliyeecognizes: the
XIXth proverb “a picture is worth 10000 words” islite representative in
this sense; but this acknowledgement is much ofdemotable examples
of confidence in this power can be found in diffeéréistorical periods.
The diagrams of the square of opposition, usudtiybated to Apuleius
[Londey & Johanson, 1987, p. 109], and the diagréomssyllogisms
imputed to Ammonius Hermiae or Philoponus [Hamilta866, p. 420],
are some initial examples; however, Ramon Llull32-2315) arguably
provides the most famous example: he developesl Magna a dia-
grammatic device used texplain divine nature to those unable to
understand God's, as if diagrammatic methods wewee ngsonvincing or
expressive than sentential representations (Fidage Thomas Murner
(1475-1537) used diagrams in Hisgica Memorativain order toteach
logic (Figure 1b). Dutch mathematician and phildsapof science Simon
Stevin (1548-1620) developed another remarkablegram in his
demonstrationthat the efficiency of the inclined plane is a itag
consequence of the impossibility of perpetual nro(Bigure 1c} And of
course, we also have Descartes (1596-1650), whdengood use of
diagrams in order tmodelhypothesis, such as the mechanics of the pineal
gland (Figure 1d).

% In this second diagram we can appreciate thathh@é must be stationary; if the chain
were heavier on one side, it would move to sucle,siiit then the chain would move
perpetually, which is absurd. Therefore, the chainst remain stationary, and so, the
fragment of the chain that is hanging must fornymreetric catenary. Thus, if we cut both
sides of the hanging fragment the equilibrium issgrved. But then the part of the chain in
the longer side of the triangle is in equilibriumttiwthe fragment of the chain in the
triangle’s shorter side: their respective numbeesia inverse ratio to the sin of the angles.
Therefore, the mechanical advantage of the inclpiade is proportional to the length of the
slope. It is not surprising, thus, that Stevin hetherdered to add the inscriptioonder, en
is gheen wondewonderful, but not unexplainable.
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1 enunagatio 2 predicabile
3 predicamentii 4 fillogifinus
3 loasdigleticus 6 fallacia

[ &

a. Ars Magna a.Logica c. De weedgaet d. Principles of
[Llull, 1501] Memorativa [Stevin, 1586] Philosophy
[Murner, 1509] [Descartes, 1982]

Fig. 1. Notable examples of diagrams for aiding reasc

What we want to stress is that the expressive pofvgliagrams fo
aiding reasoningis not news, and specially for syllogistic, as ve& se¢
from some notable examples (Figure

M "
Barbara - -
Omne CestB | B Ale M find C C————c I . '
OmneDestC | ¢ ] Ule Bfid M M——m
OmneDestB | p Ule B fab C »=b .

a. CKUnpUsnJsp in b. CKUnpUsniJsp in c. CKUmpUsmJsp in

[Leibniz, 1903] [Lambert, 1764 [BOk, 1766]
X
©y O
Y [ 4
d. CKNUmpUs Nl sp in e.CKUmpUsnsp in f. CKNUmpUsmNI sp
[Venn, 1880] [Carroll, 1887 [Venn, 1880]

Fig. 2. Notable examples of diagrammatic representatiosylaigistic
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This confidence in the power of diagrams is undegable. In order to
represent knowledge we use internal and exterpagsentations. Internal
representations convey mental images, for examytde external repre-
sentations include physical objects on paper, aoktloards, or computer
screens. Following [Larkin & Simon, 1987] externgbresentations can be
divided into two classes: sentential and diagranamnat

Sentential representations are sequences of sestémca particular
language. Diagrammatic representations are segsiavfcdiagrams that
contain information stored at one particulacus in a diagrammatic
configuration, including information about relatoowith the adjacerbci;
anddiagramsare information graphiéshat index information by location
on a plane [Larkin & Simon, 1987]. In particulargical diagrams are two-
dimensional geometric figures with spatial relatidhat are isomorphic
with the structure of logical statements [GardnE®58, p. 28]. The
difference between diagrammatic and sententiakssmtations is that, due
to this spatial feature, the former preserve explignformation about
topological relations, while the latter do not—tlragy, of course, preserve
other kinds of relations. This spatial feature jmleg some computational
advantages: diagrams group together informationdawp large amounts
of search, they automatically support a large nurobperceptual inferen-
ces, and they grant the possibility of applyingragienal constraints (like
free ridesandoverdetermined alternativgShimojima, 1996]) to allow the
automation of perceptual inference [Larkin & Sim@837].

However, despite this confidence, when it comese&soning there is
a bias (a tradition?) that supports the claim Wiste proof-based reasoning

* Information graphics can be divided into the neasses [Nakatsu, 2009]: quantitative
charts (bar-column charts, line graphs, XY scaltésp pie charts), maps (directional maps,
topographic maps, contour maps, weather mapskgddbhe way tables, two ways tables,
multiway tables), pictorial illustrations, and diags, which we can use to study system
topology (conceptual models, network diagrams)ueaqge and flow (flowcharts, activity
diagrams), hierarchy-classification (organizatioharts, classification hierarchies, com-
position models), association (semantic networksityerelationship diagrams), cause and
effect (directed graphs, fishbone diagrams, farde tanalysis diagrams), and reasoning
(argument diagrams, Euler diagrams, Venn diagrams).
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is essential in logic and mathematics, diagramdbasasoning, no matter
how useful [Nelsen, 1993] or elegant [Polster, 20&4not, for it is not

bona fidereasoning. Thus, for example, Tennant once suggestliagram
is only an heuristic to prompt certain trains dierence [Tennant, 1986];
Dieudonné urged a strict adherence to axiomatihoakst with no appeal to
geometric intuition, at least in formal proofs [Daonné, 2008]; Lagrange
remarked in thé’refaceto the First Editionof his Mécanique Analytique
that no figures were to be found in his work [Lagye, 1997]; and even
Leibniz shared a similar opinion at some point (bags is ours):

La force de la démonstration est indepéndante diglare tracée, qui n'est que
pour faciliter l'intelligence de ce qu'on veut die¢ fixer I'attention;ce sont les
propositions universelles, c'est-a-dire les déféing, les axiomes et les théoréemes
déja démontrés qui font le raisonnement et le sndtaient quand la figure n'y
serait pas[Leibniz, 1966, p. 309]

This bias against diagram-based reasoning is hased the assump-
tion that diagrams naturally lead to fallacies,takgs, and are not suscep-
tible of generalization: in short, that diagrame @rational somehow.
Nevertheless, we can backtrack an argument ag#irsstassumption in
Newton'’s Preface to the First Edition Bfincipia [Newton, 1979] by re-
ducing proof-based reasoning to mechanical reagdeimphasis is ours):

But as artificers do not work with perfect accurdatgomes to pass that mechanics
is so distinguished from geometry that what is @&ty accurate is called
geometrical; what is less so, is called mechanldailvever,the errors are not in
the art, but in the artificersHe that works with less accuracy is an imperfect
mechanic; and if any could work with perfect accyrehe would be the most
perfect mechanic of all, for the description ofhtigines and circles, upon which
geometry is founded, belongs to mechanics. [p. 11]

In similar lines, Allwein, Barwise, and Etchemend®96] and Shin
[1994] have developed a successful research progeaaround hetero-
geneous and diagrammatic reasoning that has pedntbfferent studies
and model theoretic schemes that help us represehbetter understand
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diagrammatic reasoning in logical terms, thus atowa well defined notion
of diagrammatic logical system and diagrammatiergrfice.

Indeed, if reasoning is a process that producesin®amation given
previous data and information can be representagrainmatically, it is
not uncomfortable to suggest that diagrammaticrémiee is the unit of
measure of diagrammatic reasoning: diagrammatierente would be
(in)correct depending on the compliance or violatof certain norms.
Traditionally, the understanding of these normsdesended on structural
and sentential approaches (semantical [Tarski, d]95@ntactical [Carnap,
1937], and abstract [Tarski, 1956b]), but aftes thiief exposition a ques-
tion emerges naturally: is it possible to definegdammatic inference with
structural but diagrammatic approaches?

Let us denote the relation of diagrammatic logicahsequence or
diagrammatic inference bws; this relation would define our intuitions
around the informal notions ofisual inferenceor visual argumentand
would follow, ex hipothesiclassical structural norms (reflexivity, mono-
tonicity, and cut) and the operaterwould follow Shimojima’s definetion
of a free ride as a process in which some reasgairs information
without following any step specifically designedgain it, i.e., as a process
that allows us to reach automatically (and sometinmgadvertently)
a diagrammatic conclusion from a diagrammatic regm@tion of the
premises [Shimojima, 1996, p. 32].

Using Shimojima's approach we could say tledliexivity establishes
that a if a diagram is part of a diagrammatic agunfation, then that
diagram is a visual consequence of such configuratiecause there is
a free ride from the diagrammatic configurationatgarticular diagram;
monotonicitywould say that if a diagram is a free ride frondiagram-
matic configuration, and a new diagram is addeduoh configuration,
then the initial diagram is still a free ride frahe original configuration.
Finally, cut would establish that if a diagram is a free riderf a diagram-

®In other place we have argued that monotonicitynds a bona fide property of
diagrammatic inference, but for the purposes o fgaper the assumption of monotonicity
will suffice.
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matic configuration and the addition of a new deymproduces a new free
ride, there is a free ride from the original diagraatic configuration to the
new diagram.

4. Stupecki's rule for diagrammatic reasoning

After this lengthy introduction, we would like shdwow can SR be
applied to a diagrammatic interpretation of syliigi. In order to do this,
we briefly present a diagrammatic system calledand then we propose
how can we apply SR to it.

4.1.L.

Let us suppose that syllogistic can be represemyejigsaw puzzles,
that is, by tiling arrays composed by a finite sktessellating pieces that
require assembly by way of the interlocking ofdjl¢hen, just as jigsaw
puzzles require thénterlocking of tiles, syllogisms would require the
linking of terms.

L. is a diagrammatic system that exploits the previanalogy by
using a square-tiling tessellation—hence its nanme-efder to provide
representation and a decision method for syllagidti this section we
summarily introducd.; by detailing its vocabulary, its syntax, and seman-
tics (Figure 3).

[
C OO eg—r
LT ]
a. Vocabulary b. Syntax c. Semantics

Fig. 3. Elements ofL
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The vocabulary is defined by two elementary diagrdne., pieces or
tiles), socketsandknobs(Figure 3a). Syntax is given by two rul@sgiven
two elementary diagrams, the combinations of Fiddireare well formed
diagrams (wfd); and) a stack of wfds is also a wfd. Semantics is given
the interpretation in Figure 3c.

With these components we can represent categpropbsitions using
the sockets and knobs with an implicit represematif the quantity asso-
ciated to each term. For sake of brevity we lalzghetile with an affir-
mative subject or predicate term-schef@ar P. For sake of visualization,
we color the terms (Figure 4a).

EE
-t -

a. Square of opposition b. One term combinations

Fig. 4. General schemes bf

Figure 4a also represents a square of oppositicerenvthe rules for
contradiction betweenA (E) andO (l) are preserved; while the rules for
contraries subalterns andsubcontrariesdo not work, thus defining a sys-
tem that behaves under a modern interpretatioryltifgsstic rather than
Aristotelian interpretation. However, despite thigrtcoming, the rules of
conversion contraposition andobversionare all preserved by the mecha-
nical operations of rotating diagrams or switchtiifes.

Promptly, in order to represent categorical syHiogi and decide whether
these are (in)valid,. provides a decision procedure. Suppose we build ca-
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tegorical propositions using a single term-schesagM (Figure 4b). We
can observe that, from these propositions, onlyp@siion A, “All M is

M,” is a tautology. Using this tautology we suggadiecision procedure
for L that takes any syllogismas an input and decides whether the given
syllogism is (in)valid by verifying a single rulé:the interlocking of its
middle terms produces a propositidnthe syllogism produces a free ride
(i.e., it is valid); otherwise, it produces an alefermined alternative (i.e.,

it is invalid) (Table 2).

Table 2. Decision algorithm fot

A(o)

Input: syllogismo

If interlocka’'s middle terms)=A
Prenfo) » Condo)

else
Prenfo) - Condo)

endlIf

Using the previous decision procedure we can ptheevalid syllo-
gisms depicted in Table 3.

Table 3. Valid syllogisms

Figure 1 Figure 2 Figure 3 Figure 4

Barbara Cesare Disamis Calemes
CKUmpUsmUsp | CKNI prmUsnNI sp | CKI mpUnsl sp | CKUpnNI nsNI sp

Celarent Camestres Datisi Dimaris
CKNUMpUsmNI sp | CKUpmNE smNEsp | CKUnpl sl sp CKl pnJnsl sp

Darii Festino Bocardo Fresison
CKUmpl sm sp | CKNI prmUsnNUsp | CKNUmpUnsNUsp | CKNI prml msNUs p

Ferio Baroco Ferison
CKNI mpUsmNUsp | CKUpmNUs mNUsp | CKNI npUnrs NUs p
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For sake of exposition, we show proof of the valtlogisms from the
Fig. 1: start by representing each premise withell fermed diagram and
stack up such diagrams. Then apply algori®into check if the middle
term tiles interlock each other forming a propaositA (a step denoted by
the arrows in Figure 5). Since it does so in eadecthe inferences are
free rides (i.e., valid), thus allowing the tilesa8d P interlock in the third
diagram (i.e., the conclusion).

Celarent

Fig. 5. Validity of the syllogisms from the Fig. 1 ih; using A

Defined like so, L., verifies the following statements:

Lemma 1 (Aristotle’s Lemma) Every valid syllogism is redoie to
a valid syllogism from figure 1.

Lemma 2 (Soundness w.r) If A(c)=valid, thenc is valid.

Lemma 3 (Completeness w.r) If ¢ is valid, therRl(c)=valid.

Corollary 1 (Decidability)L, is decidable.

These results indicate thiat (jigsaw puzzle sty)eallows us to obtain
the right inferencessbundnegs and only the right inferencessam-
pletenessmechanically decidability). We believe this last feature may be
approached by an application of SR.
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4.2. An application of Stupecki's rule

We think SR can be applied 1o, in three steps. First we start by
showing the representation of the axioms of assednd rejection ir..
We can observe that for a modern interpretatiosybbgistic three axioms
of assertion are correct (Figure 6a is a tautolagy, Figures 6b and 6c are
free rides) while the two axioms of rejection amedrrect (Figures 6d and
6e are overdetermined alternatives) by swift apgibms oRI (Figure 6).

< I ad e

a. Uaa b. CKUcbUacUab c.CKUcbl cal ab

d. CKUbcUaclab e.CKNIbcNlaclab

Fig. 6. Axioms of assertion and rejectionlin

Then, as a second step, we check that:

Lemma 4. The following meaningful expressions of syllogisare
tautologies or free rides i, (Cf. On Aristotelian Syllogistic84 Lemma X):
(X Uaa; (X3) A abl ba; (Xg CKUcbUacUab; (X7) CKI cbUcal ab;
(Xg) CKlIbcUcal ab; (Xo) CKUcblaclab; (X9 CKUcbl cal ab;
(X1 CUabUab; (X3 Cablab; (X)) CKIcdKUcaUdbl ab;
(X15) CKI dcKUcaUdbl ab.

Proof. We suggest proof for this statement in Figure lhbgwing that
(Xy) is a tautology (Figure 7a); (¥ and (X23) are free rides by reflexivity
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(Figures 7h and 7i); (3} is a free ride by conversion (Figure 7b); and the
rest are free rides by application0f

g. (X10) h. (X12) i. (X12)

J- (X19) K. (X15)
Fig. 7.Lemma 4

Thus, inL; the axioms of assertion are axioms or free rided, tae
axioms of rejection are overdetermined alternati@sen these two steps,
we can give the third one and directly apply SRldwing tukasiewicz,
consider the rejected expressions

(A") *CNAabCNI cdCl bdNAad and (B') *CNI bc CNI cdCl bdNAad;
from them we get, by SR, that
(C) *CNAabCNI bcCNI cdCl bdNAad

must be rejected too.
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Now, expressions (A) and (B') have their respectitagrammatic
representations i, and, by applyingl(A’) (Figures 8a) an®I(B")
(Figures 8b) we can see, literally, that they arerdetermined alternatives.

o

B o 5

a.AA) b. A(BY) c.(C)

Fig. 8. Overdetermined alternatives and application of SR

So, the application dll disproves (A") and (B'). Hence, (C') must be
rejected too, by SR (Figure 8c). And since thiatsggy may be applied to
any case, due to the soundness and completenéss R holds orL..
Therefore, it must be that all free rides lof and no other meaningful
expressions of ; are valid inferences.

5. Conclusions

This application of Stupecki's rule shows thatuipgorts diagrammatic
representations and that, hence, it is not stramgriggest that diagram-
matic systems do not constitute irrational appreacto logic in general,
and syllogistic in particular, because they satisfyitimate properties of
decidability, which is a thesis that undercutsdlaém that diagrams naturally
lead to fallacies, mistakes, and are not suscepbblgeneralization, for
such systems provide logical procedures differeminfbut equivalent to
traditional sentential approaches.

This adds some modest reinforcement to the prapéétiwein, Barwise,
and Etchemendy [1996] and Shin [1994] and showtsShgecki's advances
to syllogistic are quite fertile and that, althougk original Warsaw school
of logic ceased to exist, Polish logic may livecieer.
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