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ABSTRACT: In this contribution we pursue a simple goal: to show that Słupecki's rule 
can be applied to a diagrammatic interpretation of syllogistic. With this goal we expect 
to bring more attention on Słupecki's rule and suggest that diagrammatic systems are, 
by no means, irrational approaches to logic. 
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1. Introduction 

According to Woleński and Zygmunt, when Jerzy Słupecki (1904-
1987) passed away, those who witnessed his departure very well could 
have the impression that the Warsaw school of logic ceased to exist too: 
Słupecki was the last Warsaw logician alive who began his scientific career 
in the golden years of Polish logic [Woleński & Zygmunt, 1989]. His 
contributions were many and substantial: from many-valued logics to 
didactics of logic, his interests were wide and they included a particular 
one in syllogistic, just as his thesis advisor, Jan Łukasiewicz.  

Within Slupecki's advances to syllogistic we find a particular rule that 
bears his name, a rule that allowed him to make some discoveries that, in 
the opinion of Łukasiewicz himself, were the most important in syllogistic 
since Aristotle [Łukasiewicz, 1970]. In this contribution we pursue a simple 
goal: to show that Słupecki's rule can be applied to a diagrammatic inter-
pretation of syllogistic. With this goal we expect to bring more attention on 
Słupecki's rule (SR from now on) and suggest that diagrammatic systems 
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are, by no means, irrational approaches to logic in general, and syllogistic 
in particular, for such systems provide equivalent logical procedures 
however different from traditional sentential approaches.  

To reach our goal we have organized this paper in the next way. In 
Section 2 we begin with a brief exposition of SR. In Section 3 we develop 
some ideas behind the notion of diagrammatic logical consequence. Then, 
in Section 4, we explain some general aspects of a diagrammatic system 
and, after that, we propose how SR can be applied to it. 

2. Słupecki's rule 

In a controversial and groundbreaking work, Łukasiewicz [1951] 
showed that Aristotelian syllogistic could be axiomatically developed on 
the grounds of standard propositional calculus, substitution and detachment 
rules (for asserted and rejected expressions), and some axioms of assertion 
and rejection. His axiomatization can be summarized in Table 1.1 

Table 1. Łukasiewicz's axiomatization for Aristotelian syllogistic 

Axioms Rules 

Assertion 

Uaa 

Iaa 

CKUcbUacUab 

CKUcbIcaIab 

Substitution: If α is an asserted expression, then any 

expression produced from α by a valid substitution is 

also an asserted expression. 

Detachment: If Cαβ and α are asserted expressions, 

then β is an asserted expression. 

______________ 

1 A categorical proposition is a proposition composed by two terms, a quantity, and 
a quality. The subject and the predicate of a proposition are called terms and while the 
term-schema a denotes the subject term of the proposition, the term-schema b denotes the 
predicate. Following Łukasiewicz's notation, the quantity may be either universal (U) or 
particular (I). And finally, the quality may be either affirmative or negative (N). With this 
notation the four categorical propositions are represented by Uab (All a is b), NUab 
(Some a is not b), Iab (Some a is b), NIab (No a is b).  C and K stand for implication and 
conjunction, respectively.  
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Rejection 
CKUbcUacIab 

CKNIbcNIacIab 

Substitution: If β is a substitution of  α , and β is 

rejected, α must be rejected too. 

Detachment: If the implication Cαβ is asserted, but β 

is rejected, α must be rejected too. 

 
From the axioms and rules of assertion it is possible to derive the 

fundamental tenets of Aristotelian syllogistic: the square of opposition and 
all the valid syllogisms. On the other hand, from the axioms and rules of 
rejection all the invalid moods of syllogistic can be rejected. However, 
according to Łukasiewicz [1951], this axiomatic approach does not suffice 
to describe Aristotelian syllogistic because: 

 
[…] there exist significant expressions, for instance CIabCNAabAba, which can 
neither be proved by our axioms and rules of assertion nor disproved by our 
axioms and rules of rejection. I call such expressions undecidable with respect to 
our basis. Undecidable expressions may be either true in the Aristotelian logic or 
false. The expression CIabCNAabAba is, of course, false. [p. 100]2 
 

Under this context of (un)decidability, Łukasiewicz posed two 
problems: i) is the number of undecidable expressions finite? And ii ) is it 
possible to complete the axiomatic system described in Table 1 so that we 
can decide whether a given expression has to be asserted or rejected? In 
On Aristotelian Syllogistic, Słupecki [1951] answered both questions: the 
former, negatively (§7, Theorem III); the latter, affirmatively (§9, Theorem V). 
The rule that bears his name is a result of answering these questions.  

In §2, Definition V, Słupecki describes what a rejected expression is. A 
rejected expression is a meaningful expression of Aristotelian syllogistic 
that is rejected w.r.t. the expression: 

 
CKUbcUacIab 

 
Then, according to §8, Definition XIV, a k-range rejected expression  

is defined as follows: let k be any natural number, α1 and α2 any general- 
______________ 

2 In this excerpt, the expression CIabCNAabAba must be read as CIabNUabUba.  
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or particular-affirmative expressions, and x any simple expression; then a 
k-range rejected expression is, for k=1, any meaningful expression of 
Aristotelian syllogistic which is a rejected expression according to 
Definition V, and also any expression having the form:  

(A) C*K*N*α1N*α2x  

provided the expressions  

(B) C*N*α1x and (C) C*N*α2x  

are rejected according to Definition V; and for k>1, any meaningful 
expression which is rejected w.r.t. any set of meaningful expressions, every 
member of which is a rejected of a lower range than k, and also any expres-
sions (B) and (C) are rejected expressions of ranges lower than k. 

With the aid of these definitions—and of course, other results that 
would require more space than we have—, Słupecki developed a rule that 
today bears his name (§9, Proposition III): if the expressions (B) and (C) 
are both false, then expression (A) is also false; formally:  

(SR) If *Cαγ and *Cβγ, then *CαCβγ, 

that is to say, that if α and β are simple negative expressions and γ is an 
elementary expression, then if Cαγ and Cβγ are rejected, then CαCβγ must 
be rejected too (* represents the notion of rejection).  

When the axiomatization for Aristotelian syllogistic showed in Table 1 
is modified by replacing the second axiom of rejection with SR, 
Aristotelian syllogistic can be proved to be complete and decidable. We 
think it is possible to do something similar for a diagrammatic system 
capable of representing syllogistic.    

3. Diagrams and diagrammatic logical consequence 

But before we approach such possibility, we would like to dedicate 
some time to argue that diagrammatic logical systems can be defined in a 
formal fashion and that we can describe a well behaved notion of 
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diagrammatic logical consequence between diagrams; and in order to do 
that, we would like to introduce diagrams by paying attention to their 
expressive power. 

This expressive power is something pop culture already recognizes: the 
XIXth proverb “a picture is worth 10000 words” is quite representative in 
this sense; but this acknowledgement is much older, for notable examples 
of confidence in this power can be found in different historical periods. 
The diagrams of the square of opposition, usually attributed to Apuleius 
[Londey & Johanson, 1987, p. 109], and the diagrams for syllogisms 
imputed to Ammonius Hermiae or Philoponus [Hamilton, 1866, p. 420], 
are some initial examples; however, Ramon Llull (1232-1315) arguably 
provides the most famous example: he developed Ars Magna, a dia-
grammatic device used to explain divine nature to those unable to 
understand God’s, as if diagrammatic methods were more convincing or 
expressive than sentential representations (Figure 1a). Thomas Murner 
(1475-1537) used diagrams in his Logica Memorativa in order to teach 
logic (Figure 1b). Dutch mathematician and philosopher of science Simon 
Stevin (1548-1620) developed another remarkable diagram in his 
demonstration that the efficiency of the inclined plane is a logical 
consequence of the impossibility of perpetual motion (Figure 1c).3 And of 
course, we also   have Descartes (1596-1650), who made good use of 
diagrams in order to model hypothesis, such as the mechanics of the pineal 
gland (Figure 1d). 
 

______________ 

3 In this second diagram we can appreciate that the chain must be stationary; if the chain 
were heavier on one side, it would move to such side, but then the chain would move 
perpetually, which is absurd. Therefore, the chain must remain stationary, and so, the 
fragment of the chain that is hanging must form a symmetric catenary. Thus, if we cut both 
sides of the hanging fragment the equilibrium is preserved. But then the part of the chain in 
the longer side of the triangle is in equilibrium with the fragment of the chain in the 
triangle’s shorter side: their respective numbers are in inverse ratio to the sin of the angles. 
Therefore, the mechanical advantage of the inclined plane is proportional to the length of the 
slope. It is not surprising, thus, that Stevin himself ordered to add the inscription: Wonder, en 
is gheen wonder; wonderful, but not unexplainable. 
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a. Ars Magna 
[Llull, 1501] 

a. Logica 
Memorativa 

[Murner, 1509] 

Fig. 1. Notable examples of diagrams for aiding reasoning

 
What we want to stress is that the expressive power of diagrams for 

aiding reasoning is not news, and specially for syllogistic, as we can see 
from some notable examples (Figure 2).
 

 

a. CKUmpUsmUsp in 
[Leibniz, 1903] 

b. CKUmpUsmUsp 
[Lambert, 1764]

 

d. CKNUmpUsmNIsp in 
[Venn, 1880] 

e. CKUmpUsmUsp 
[Carroll, 1887]

Fig. 2. Notable examples of diagrammatic representations of syllogistic
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c. De weedgaet 
[Stevin, 1586] 

d. Principles of 
Philosophy 

[Descartes, 1982] 

Notable examples of diagrams for aiding reasoning 

What we want to stress is that the expressive power of diagrams for 
is not news, and specially for syllogistic, as we can see 

from some notable examples (Figure 2). 

 
 

CKUmpUsmUsp in 
[Lambert, 1764] 

c. CKUmpUsmUsp in 
[Bök, 1766] 

 

 

CKUmpUsmUsp in 
[Carroll, 1887] 

f. CKNUmpUsmNIsp 
[Venn, 1880] 

Notable examples of diagrammatic representations of syllogistic 
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This confidence in the power of diagrams is understandable. In order to 
represent knowledge we use internal and external representations. Internal 
representations convey mental images, for example; while external repre-
sentations include physical objects on paper, on blackboards, or computer 
screens. Following [Larkin & Simon, 1987] external representations can be 
divided into two classes: sentential and diagrammatic. 

Sentential representations are sequences of sentences in a particular 
language. Diagrammatic representations are sequences of diagrams that 
contain information stored at one particular locus in a diagrammatic 
configuration, including information about relations with the adjacent loci; 
and diagrams are information graphics4 that index information by location 
on a plane [Larkin & Simon, 1987]. In particular, logical diagrams are two-
dimensional geometric figures with spatial relations that are isomorphic 
with the structure of logical statements [Gardner, 1958, p. 28]. The 
difference between diagrammatic and sentential representations is that, due 
to this spatial feature, the former preserve explicitly information about 
topological relations, while the latter do not—they may, of course, preserve 
other kinds of relations. This spatial feature provides some computational 
advantages: diagrams group together information avoiding large amounts 
of search, they automatically support a large number of perceptual inferen-
ces, and they grant the possibility of applying operational constraints (like 
free rides and overdetermined alternatives [Shimojima, 1996]) to allow the 
automation of perceptual inference [Larkin & Simon, 1987].  

However, despite this confidence, when it comes to reasoning there is 
a bias (a tradition?) that supports the claim that while proof-based reasoning 

______________ 

4 Information graphics can be divided into the next classes [Nakatsu, 2009]: quantitative 
charts (bar-column charts, line graphs, XY scatterplots, pie charts), maps (directional maps, 
topographic maps, contour maps, weather maps), tables (one way tables, two ways tables, 
multiway tables), pictorial illustrations, and diagrams, which we can use to study system 
topology (conceptual models, network diagrams), sequence and flow (flowcharts, activity 
diagrams), hierarchy-classification (organization charts, classification hierarchies, com-
position models), association (semantic networks, entity relationship diagrams), cause and 
effect (directed graphs, fishbone diagrams, fault tree analysis diagrams), and reasoning 
(argument diagrams, Euler diagrams, Venn diagrams). 
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is essential in logic and mathematics, diagram-based reasoning, no matter 
how useful [Nelsen, 1993] or elegant [Polster, 2004], is not, for it is not 
bona fide reasoning. Thus, for example, Tennant once suggested a diagram 
is only an heuristic to prompt certain trains of inference [Tennant, 1986]; 
Dieudonné urged a strict adherence to axiomatic methods with no appeal to 
geometric intuition, at least in formal proofs [Dieudonné, 2008]; Lagrange 
remarked in the Preface to the First Edition of his Mécanique Analytique 
that no figures were to be found in his work [Lagrange, 1997]; and even 
Leibniz shared a similar opinion at some point (emphasis is ours): 
 

La force de la démonstration est indepéndante de la figure tracée, qui n'est que 
pour faciliter l'intelligence de ce qu'on veut dire et fixer l'attention; ce sont les 
propositions universelles, c'est-à-dire les définitions, les axiomes et les théorèmes 
déjà démontrés qui font le raisonnement et le soutiendraient quand la figure n'y 
serait pas. [Leibniz, 1966, p. 309]  

 
This bias against diagram-based reasoning is based upon the assump-

tion that diagrams naturally lead to fallacies, mistakes, and are not suscep-
tible of generalization: in short, that diagrams are irrational somehow. 
Nevertheless, we can backtrack an argument against this assumption in 
Newton’s Preface to the First Edition of Principia [Newton, 1979] by re-
ducing proof-based reasoning to mechanical reasoning (emphasis is ours): 

 
But as artificers do not work with perfect accuracy, it comes to pass that mechanics 
is so distinguished from geometry that what is perfectly accurate is called 
geometrical; what is less so, is called mechanical. However, the errors are not in 
the art, but in the artificers. He that works with less accuracy is an imperfect 
mechanic; and if any could work with perfect accuracy, he would be the most 
perfect mechanic of all, for the description of right lines and circles, upon which 
geometry is founded, belongs to mechanics. [p. 11]  

 
In similar lines, Allwein, Barwise, and Etchemendy [1996] and Shin 

[1994] have developed a successful research programme around hetero-
geneous and diagrammatic  reasoning that has promoted different studies 
and model theoretic schemes that help us represent and better understand 
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diagrammatic reasoning in logical terms, thus allowing a well defined notion 
of diagrammatic logical system and diagrammatic inference. 

Indeed, if reasoning is a process that produces new information given 
previous data and information can be represented diagrammatically, it is 
not uncomfortable to suggest that diagrammatic inference is the unit of 
measure of diagrammatic reasoning: diagrammatic inference would be 
(in)correct depending on the compliance or violation of certain norms. 
Traditionally, the understanding of these norms has depended on structural 
and sentential approaches (semantical [Tarski, 1956a], syntactical [Carnap, 
1937], and abstract [Tarski, 1956b]), but after this brief exposition a ques-
tion emerges naturally: is it possible to define diagrammatic inference with 
structural but diagrammatic approaches?   

Let us denote the relation of diagrammatic logical consequence or 
diagrammatic inference by h; this relation would define our intuitions 
around the informal notions of visual inference or visual argument and 
would follow, ex hipothesi, classical structural norms (reflexivity, mono-
tonicity, and cut) and the operator h would follow Shimojima’s definetion 
of a free ride as a process in which some reasoner gains information 
without following any step specifically designed to gain it, i.e., as a process 
that allows us to reach automatically (and sometimes inadvertently) 
a diagrammatic conclusion from a diagrammatic representation of the 
premises [Shimojima, 1996, p. 32]. 

Using Shimojima's approach we could say that reflexivity establishes 
that a if a diagram is part of a diagrammatic configuration, then that 
diagram is a visual consequence of such configuration because there is 
a free ride from the diagrammatic configuration to a particular diagram; 
monotonicity would say that if a diagram is a free ride from a diagram-
matic configuration, and a new diagram is added to such configuration, 
then the initial diagram is still a free ride from the original configuration.5 
Finally, cut would establish that if a diagram is a free ride from a diagram-
______________ 

5 In other place we have argued that monotonicity is not a bona fide property of 
diagrammatic inference, but for the purposes of this paper the assumption of monotonicity 
will suffice. 
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matic configuration and the addition of a new diagram produces a new free 
ride, there is a free ride from the original diagrammatic configuration to the 
new diagram. 

4. Słupecki's rule for diagrammatic reasoning 

After this lengthy introduction, we would like show how can SR be 
applied to a diagrammatic interpretation of syllogistic. In order to do this, 
we briefly present a diagrammatic system called L� and then we propose 
how can we apply SR to it. 

4.1. L�   

Let us suppose that syllogistic can be represented by jigsaw puzzles, 
that is, by tiling arrays composed by a finite set of tessellating pieces that 
require assembly by way of the interlocking of tiles; then, just as jigsaw 
puzzles require the interlocking of tiles, syllogisms would require the 
linking of terms. 

L� is a diagrammatic system that exploits the previous analogy by 
using a square-tiling tessellation—hence its name—in order to provide 
representation and a decision method for syllogistic. In this section we 
summarily introduce L� by detailing its vocabulary, its syntax, and seman-
tics (Figure 3).  
 

 

 

 

a. Vocabulary b. Syntax c. Semantics 

Fig. 3. Elements of  L� 
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The vocabulary is defined by two elementary diagrams (i.e., pieces or 
tiles), sockets and knobs (Figure 3a). Syntax is given by two rules: i) given 
two elementary diagrams, the combinations of Figure 3b are well formed 
diagrams (wfd); and ii ) a stack of wfds is also a wfd. Semantics is given by 
the interpretation in Figure 3c.  

With these components we can represent categorical propositions using 
the sockets and knobs with an implicit representation of the quantity asso-
ciated to each term. For sake of brevity we label each tile with an affir-
mative subject or predicate term-schema, S or P. For sake of visualization, 
we color the terms (Figure 4a).  
 

  

a. Square of opposition b. One term combinations 

Fig. 4. General schemes of L� 
 

Figure 4a also represents a square of opposition where the rules for 
contradiction between A (E) and O (I) are preserved; while the rules for 
contraries, subalterns, and subcontraries do not work, thus defining a sys-
tem that behaves under a modern interpretation of syllogistic rather than 
Aristotelian interpretation. However, despite this shortcoming, the rules of 
conversion, contraposition, and obversion are all preserved by the mecha-
nical operations of rotating diagrams or switching tiles. 

Promptly, in order to represent categorical syllogisms and decide whether 
these are (in)valid, L� provides a decision procedure. Suppose we build ca-
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tegorical propositions using a single term-schema, say M (Figure 4b). We 
can observe that, from these propositions, only proposition A, “All M is 
M,” is a tautology. Using this tautology we suggest a decision procedure 
for L� that takes any syllogism σ as an input and decides whether the given 
syllogism is (in)valid by verifying a single rule: if the interlocking of its 
middle terms produces a proposition A, the syllogism produces a free ride 
(i.e., it is valid); otherwise, it produces an overdetermined alternative (i.e., 
it is invalid) (Table 2). 

 
Table 2. Decision algorithm for L� 

A(σ)  

Input: syllogism σ 
If  interlock(σ's middle terms)==A   
     Prem(σ) h Conc(σ) 
else 
     Prem(σ) d Conc(σ) 
endIf 

 
Using the previous decision procedure we can prove the valid syllo-

gisms depicted in Table 3.  
 

Table 3. Valid syllogisms 

Figure 1 Figure 2 Figure 3 Figure 4 

Barbara 
CKUmpUsmUsp 

Cesare 
CKNIpmUsmNIsp 

Disamis 
CKImpUmsIsp 

Calemes 
CKUpmNImsNIsp 

Celarent 
CKNUmpUsmNIsp 

Camestres 
CKUpmNIsmNIsp 

Datisi 
CKUmpImsIsp 

Dimaris 
CKIpmUmsIsp 

Darii 
CKUmpIsmIsp 

Festino 
CKNIpmUsmNUsp 

Bocardo 
CKNUmpUmsNUsp 

Fresison 
CKNIpmImsNUsp 

Ferio 
CKNImpUsmNUsp 

Baroco 
CKUpmNUsmNUsp 

Ferison 
CKNImpUmsNUsp 

– 
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For sake of exposition, we show proof of the valid syllogisms from the 
Fig. 1: start by representing each premise with a well formed diagram and 
stack up such diagrams. Then apply algorithm A to check if the middle 
term tiles interlock each other forming a proposition A (a step denoted by 
the arrows in Figure 5). Since it does so in each case, the inferences are 
free rides (i.e., valid), thus allowing the tiles S and P interlock in the third 
diagram (i.e., the conclusion). 
 

Fig. 5. Validity of the syllogisms from the Fig. 1 in L� using  A 

 
Defined like so, L� verifies the following statements:  
Lemma 1 (Aristotle’s Lemma) Every valid syllogism is reducible to 

a valid syllogism from figure 1.  
Lemma 2 (Soundness w.r.t. A) If A(σ)=valid, then σ is valid.  
Lemma 3 (Completeness w.r.t. A) If σ is valid, then A(σ)=valid.  
Corollary 1 (Decidability) L� is decidable.  
 
These results indicate that L� (jigsaw puzzle style) allows us to obtain 

the right inferences (soundness) and only the right inferences (com-
pleteness) mechanically (decidability). We believe this last feature may be 
approached by an application of SR. 
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4.2. An application of Słupecki's rule 

We think SR can be applied to L� in three steps. First we start by 
showing the representation of the axioms of assertion and rejection in L�. 
We can observe that for a modern interpretation of syllogistic three axioms 
of assertion are correct (Figure 6a is a tautology, and Figures 6b and 6c are 
free rides) while the two axioms of rejection are incorrect (Figures 6d and 
6e are overdetermined alternatives) by swift applications of A (Figure 6).  
 

   

a.  Uaa b. CKUcbUacUab c. CKUcbIcaIab 

 
 

 

d. CKUbcUacIab e. CKNIbcNIacIab  

Fig. 6. Axioms of assertion and rejection in L� 
 

Then, as a second step, we check that: 
 
Lemma 4. The following meaningful expressions of syllogistic are 

tautologies or free rides in  L� (Cf. On Aristotelian Syllogistic, §4 Lemma X): 
(X1) Uaa; (X3) CIabIba; (X6) CKUcbUacUab; (X7) CKIcbUcaIab;  
(X8) CKIbcUcaIab; (X9) CKUcbIacIab; (X10) CKUcbIcaIab;  
(X12) CUabUab; (X13) CIabIab; (X14) CKIcdKUcaUdbIab;  
(X15) CKIdcKUcaUdbIab. 

Proof. We suggest proof for this statement in Figure 7 by showing that 
(X1) is a tautology (Figure 7a); (X12) and (X13) are free rides by reflexivity 
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(Figures 7h and 7i); (X3) is a free ride by conversion (Figure 7b); and the 
rest are free rides by applications of A.       
 

 
  

a. (X1) b. (X3)  c. (X6) 

   

d. (X7) e. (X8) f. (X9) 

   

g. (X10) h. (X12) i. (X13) 

 
 

j. (X14) k. (X15)  

Fig. 7. Lemma 4 
 

Thus, in L� the axioms of assertion are axioms or free rides, and the 
axioms of rejection are overdetermined alternatives. Given these two steps, 
we can give the third one and directly apply SR. Following Łukasiewicz, 
consider the rejected expressions 

 
(A') *CNAabCNIcdCIbdNAad and (B') *CNIbcCNIcdCIbdNAad; 

 
from them we get, by SR, that  
 

(C') *CNAabCNIbcCNIcdCIbdNAad 
 
must be rejected too. 
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Now, expressions (A') and (B') have their respective diagrammatic 
representations in L� and, by applying A(A') (Figures 8a) and A(B') 
(Figures 8b) we can see, literally, that they are overdetermined alternatives.  
 

a. A(A') b. A(B') c. (C') 

Fig. 8. Overdetermined alternatives and application of  SR 
 
So, the application of A disproves (A') and (B'). Hence, (C') must be 

rejected too, by SR (Figure 8c). And since this strategy may be applied to 
any case, due to the soundness and completeness of L�, SR holds on L�. 
Therefore, it must be that all free rides of L� and no other meaningful 
expressions of L� are valid inferences. 

5. Conclusions 

This application of Słupecki's rule shows that it supports diagrammatic 
representations and that, hence, it is not strange to suggest that diagram-
matic systems do not constitute irrational approaches to logic in general, 
and syllogistic in particular, because they satisfy legitimate properties of 
decidability, which is a thesis that undercuts the claim that diagrams naturally 
lead to fallacies, mistakes, and are not susceptible of generalization, for 
such systems provide logical procedures different from but equivalent to 
traditional sentential approaches. 

This adds some modest reinforcement to the projects of Allwein, Barwise, 
and Etchemendy [1996] and Shin [1994] and shows that Slupecki's advances 
to syllogistic are quite fertile and that, although the original Warsaw school 
of logic ceased to exist, Polish logic may live forever.  



 Słupecki's Rule for Diagrammatic Reasoning 95  

Acknowledgements 

We would like to thank the anonymous reviewers for their precise 
corrections and useful comments. Financial support given by UPAEP Grant 
30108-1008. 
 

References 

Allwein G., Barwise, J., & Etchemendy J., (1996), Logical Reasoning with Diagrams, 
New York, Oxford University Press. 

Bök A.F., (1766), Sammlung der Schriften, welche den logischen Calcul Herrn 
Ploucquets betreffen, Frankfurt. 

Carnap R. (1937), The Logical Syntax of Language, Trans. A. Smeaton, London, Kegan 
Paul, Trench, Trubner & Co. 

Carroll L., (1887), The Game of Logic (2nd ed.), London, Macmillan and Co. 
Descartes R., (1982), Principles of Philosophy, Translated by V.R. Miller, R.P. Miller, 

Dordrecht-Boston-London, Kluwer. 
Dieudonné J., (2008), Foundations of Modern Analysis, Read Books. 
Gardner, M., (1958), Logic Machines and Diagrams, New York-Toronto-London, 

McGraw-Hill. 
Hamilton W., (1866), Lectures on Metaphysics and Logic, Boston: Gould and Lincoln. 
Lagrange, J.L., (1997), Analytical Mechanics, Translated and edited by A. Boissonnade, 

V.N. Vagliente, Dordrecht, Springer Science+Business Media. 
Lambert J. H., (1764), Neues Organon, Leipzig. 
Larkin J. H. & Simon, H. A., (1987), “Why a Diagram is (Sometimes) Worth Ten 

Thousand Words”, Cognitive Science 11(1), pp. 65-100. 
Leibniz G., (1966), Nouveaux essais sur l'entendement humain, Paris, Garnier-Flamma-

rion. 
Leibniz G., (1903), Opuscules et fragments inédits de Leibniz. Extraits des manuscrits 

de la Bibliothèque royale de Hanovre par Louis Couturat, Paris, Félix Alcan. 
Llull R., (1501), Ars magna, Impressum per Petru[m] Posa. 
Londey D. & Johanson, C., (1987), The Logic of Apuleius, Philosophia Antiqua No. 47, 

Leiden, Brill. 
Łukasiewicz J., (1951), Aristotle’s Syllogistic from the Standpoint of Modern Formal 

Logic, Clarendon, Oxford. 
Łukasiewicz J., (1970), Selected Works, Borkowski L. [ed.], Amsterdam, North-

Holland. 
Nakatsu R., (2009), Reasoning with Diagrams Decision-Making and Problem-Solving 

with Diagrams, Hoboken, John Wiley & Sons. 



96  JOSÉ MARTÍN CASTRO-MANZANO 

Nelsen R., (1993), Proofs Without Words: Exercises in Visual Thinking, The Mathe-
matical Association of America. 

Newton I., (1979), Mathematical Principles of Natural Philosophy, Translated by 
A. Motte, University of California Press. 

Polster B., (2004), Q.E.D.: Beauty in Mathematical Proof, New York: Wooden Books. 
Tarski A., (1956a), “On the Concept of Logical Consequence”, [in:] Logic, Semantics, 

Metamathematics. Papers from 1923 to 1938, Oxford, Clarendon. 
Tarski A., (1956b), “On Some Fundamental Concepts of Metamathematics”, [in:] Logic, 

Semantics, Metamathematics. Papers from 1923 to 1938, Oxford, Clarendon. 
Tennant N., (1986), “The Withering Away of Formal Semantics”, Mind & Language 

1(4), pp. 302–318. 
Shimojima A., (1996), “Operational Constraints in Diagrammatic Reasoning”, [in:] 

G.Allwein, J. Barwise, & J. Etchemendy [eds.], Logical Reasoning with Diagrams, 
New York, Oxford University Press. 

Shin S., (1994), The Logical Status of Diagrams, Cambridge, Cambridge University 
Press. 

Słupecki J. Z., (1951), “On Aristotelian Syllogistic”, Studia Philosophica 4, pp. 275-
300. 

Stevin S., (1586), De Beghinselen der Weeghconst, Leyden. 
Venn J., (1880), “On the Diagrammatic and Mechanical Representation of Propositions 

and Reasonings”, London, Edinburgh and Dublin Philosophical Magazine and 
Journal of Science (5 Ser.) 10, pp. 1-18. 

Woleński J. & Zygmunt, J., (1989), “Jerzy Słupecki (1904-1987): Life and Work”, 
Studia Logica 48, pp. 401-411. 

 

 
José Martín Castro-Manzano,  
Universidad Popular Autónoma del Estado de Puebla (UPAEP), Mexico, 
josemartin.castro@upaep.mx 

 
 
 
 

 


