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The Exploratory Role of Idealizations  
and Limiting Cases in Models

Abstract. In this article we argue that idealizations and limiting cases in models play an 
exploratory role in science. Four senses of exploration are presented: exploration of the 
structure and representational capacities of theory; proof-of-principle demonstrations; po-
tential explanations; and exploring the suitability of target systems. We illustrate our claims 
through three case studies, including the Aharonov-Bohm effect, the emergence of anyons 
and fractional quantum statistics, and the Hubbard model of the Mott phase transition. We 
end by reflecting on how our case studies and claims compare to accounts of idealization 
in the philosophy of science literature such as Michael Weisberg’s three-fold taxonomy.
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1. Introduction

Idealizations and the use of models, which are by their very nature imper-
fect or highly fictitious representations of reality, are ubiquitous in science.1 
How is one to make sense of the fact that, in attaining empirical adequacy 
and giving us knowledge about the world, our best scientific theories invoke 
falsehoods and distortions of reality? A standard, albeit naïve, response to 
such a worry has been not to allocate any substantive role to idealizations and 

1 Some examples of idealizations include nonviscous fluid flow, a perfect vacuum, perfectly 
rational agents, and isolated populations, while examples of (idealized) models include the Ising 
model, the Hardy-Weinberg equilibrium model, and Schelling’s segregation model. See Shech 
([2018a]) for a related review article.
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models. Bluntly put, idealizations and models are used to simplify and abstract 
away irrelevant details, render computationally tractable various systems of 
study, or else are taken as auxiliary tools for application of theory. In principle, 
so the argument goes, idealizations and models can be dispensed with.2

In contrast, many philosophers of science have attempted to articulate 
substantive roles for idealizations and models to play in science, with the 
emphasis having largely been placed on explanation. Our goal in this paper 
is to build upon recent work and join this latter camp.3 However, whereas 
previous authors have concentrated on the explanatory role, we wish to fill 
what we take to be a missing gap in the literature and stress the exploratory 
roles of idealizations and models.4 

In particular, we will present three case studies that illustrate our claims 
including the Aharonov-Bohm effect, the emergence of anyons and fractional 
quantum statistics, and the Hubbard model of the Mott phase transitions (Sec-
tions 2-4). Although we do not intend for our list to be exhaustive, we submit 
that idealizations and models can be exploratory in at least four substantive 
manners: they may allow for the exploration of the structure and represen-
tational capacities of theory; feature in proof-of-principle demonstrations; 
generate potential explanations of observed (types of) phenomena; and may 
lead us to assessments of the suitability of target systems.5 Last, we conclude 
the paper by comparing our case studies with Michael Weisberg’s ([2007], 
[2013]) recent taxonomy of idealizations and models (Section 5). We argue 
that his three-fold classificatory scheme is lacking in that it does not make 
room for the exploratory role of idealizations and models, thereby offering 
a distorted view of the case studies that we present.

2 See Norton ([2012]) for a recent defense of the claim that idealizations ought to be 
dispensed with.

3 For instance, see Batterman ([2002]) for a discussion of explanatory idealizations, and 
Batterman and Rice ([2014]) and Bokulich ([2008]) for the explanatory role of imperfect models.

4 Similar themes have been explored by, among others, Redhead ([1980]), Bailer-Jones 
([2002]), Yi ([2002]), Wimsatt ([2007], and Ruetsche (2011, p. 337). See Gelfert ([2016], [2018]) 
and Massimi ([2018]) for the exploratory uses of scientific models, and see Earman [2017] and 
Shech ([2015a], [2015b], [2016], [2017], [2018a], [2018b]) for exploratory idealizations. 

5 This list partially follows Gelfert’s ([2016], pp. 83-94) fourfold distinction of exploratory 
functions of models. 
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A caveat is in order before beginning. We do not endeavor to define what 
idealizations and models are. The literature on these questions is vast, and 
ultimately not much will be at stake for our purposes.6 Instead, we will appeal 
to a generic understanding of these notions, on the assumption that, whatever 
one’s preferred account of idealizations and models, the proposal developed in 
the present paper can be adapted accordingly. This means that at times we will 
allow ourselves to talk about an ‘idealization,’ or an idealized system or object, 
and a ‘model’ interchangeably since both idealizations and models, insofar as 
they are used to represent physical phenomena, are misrepresentations of sorts.

2. The Aharonov-Bohm Effect

2.1. Case Study: AB Effect

Consider a standard double-slit experiment undertaken with a beam of 
electrons. Experiments have shown that electrons manifest a behavior consist-
ent with wave interference patterns (see Figure 1). Now add to this configuration 
an infinitely long and absolutely impenetrable solenoid (in between the double-
slit screen and the detector screen) (see Figure 2). If we turn on the solenoid, 
what type of behavior should we expect to witness? Intuitions may vary on this 
point, but there is a straightforward sense in which no answer can be given: we 
cannot ever build an apparatus with an infinitely long and absolutely impen-
etrable solenoid, so we cannot know what would happen in such a scenario. 
However, the question can be answered within the context of a theory. For 
instance, if we take our thought experiment to manifest in a world governed 
by classical physics, there is no reason to think that anything will happen. Ac-

6 For more on idealizations see Weisberg ([2007], [2013]), Ladyman ([2008]), Elliott-Graves 
and Weisberg ([2014]), Shech [2018a], and Fletcher et al. [Forthcoming], and for more models 
see Morgan and Morrison ([1999]), Frigg and Hartmann ([2012]), and Gelfert ([2016]). See 
Norton ([2012]) for more on the distinction between idealization and approximation, and see 
Jones ([2005]) for more on the distinction between idealization and abstraction. Psillos ([2011]) 
differentiates between the process of idealization/abstraction and the idealized/abstracted sys-
tem/model that is the product of such a process. Also see Shech ([2015b], [2016]) for more on 
misrepresentation and depiction.
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cording to the setup the solenoid is infinitely long so that the magnetic field B 
produced is wholly confined to a region Sin inside the solenoid. The solenoid 
is also absolutely impenetrable, so that the beam of electrons is completely 
confined to a region Sout outside the solenoid. Since there is no local (physical 
or causal) interaction between the electrons and the magnetic field, classical 
physics makes no novel prediction about this particular idealized system.

Figure 1. (Left) An example for an interference pattern from a double-slit experiment 
(from Möllenstedt and Bayh 1962, 304). (Right) Single-electron build-up of (biprism) 
interference pattern (from Tonomura [1999], p. 15). (a) 8 electrons, (b) 270 electrons, (c) 

2000 electrons, and (d) 60,000 electrons.

Figure 2. The AB effect. A beam of electrons Ψ is split in a region Sout, made to encircle 
a solenoid (that generates a magnetic field inside the region Sin), and then to recombine on 

a detector screen. The original interference pattern is shifted by an amount Δx.
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In stark contrast to these classical intuitions, Yakir Aharonov and Da-
vid J. Bohm ([1959]) showed that quantum mechanics predicts a shift in 
interference pattern, which has become known as the (magnetic) Aharonov-
Bohm (AB) effect.7 In modeling the idealized scenario, they began with the 
standard Hamiltonian used for a charged particle in electromagnetic fields: 

2( / ) / 2I
ABH q c m= −P A , where m and q are the electron mass and charge, 

respectively, i= − ∇P  the momentum operator, A the electromagnetic vec-
tor potential operator generating the magnetic field such that =∇×AB , and 
the electromagnetic scalar potential has been set to zero. Since Sin is a region 
inaccessible to the beam of electrons represented by the quantum state Ψ, I

ABH  
acts on the Hilbert space 2 3( inL S=   ) of square-integrable functions 
defined on a non-simply connected configuration space 3

inS  , that is, on 
three dimensional Euclidean space from which the interior of the solenoid 
has been excised. This means that I

ABH  is not a self-adjoint operator, and so it 
does not generate the dynamics of the system. In order to remedy the situa-
tion, Aharonov and Bohm ([1959]) chose a unique self-adjoint extension of 

I
ABH , symbolized by 2( / ) / 2I

ABH q c m= −P A , which is picked out by Dirichlet 
boundary conditions in which the wavefunction vanishes at the solenoid 
boundary (i.e., Ψ 0=  at the boundary). One can then derive the shift in in-
terference pattern by calculating the relative phase factor iθe  between the two 
components of the wave function, Ψ1 and Ψ2, as is done in standard textbooks, 
e.g., Ballentine ([1998], p. 321-325).8

2.2. Exploration in the AB Effect

The first sense of exploration that we wish to consider is exploration of 
the structure of a scientific theory. It is by making use of an idealization, viz., 
an infinitely long and absolutely impenetrable solenoid, and appealing to the 
corresponding idealized model I

ABH , that Aharonov and Bohm ([1959]) were 

7 See Peshkin and Tonomura ([1989]) for more on the theory of the AB effect and its 
experimental confirmation.

8 But see Shech ([2017]) and Earman ([2017]) for further intricacies regarding the deriva-
tion of the AB effect.
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able to highlight one of the blatant contrasts between classical and quantum 
physics: the two theories have a very different structure in that they make vastly 
different predictions about an idealized model – the model representing the 
behavior of electrons in the vicinity of a shielded magnetic field. Moreover, 
exploring the quantum physics of infinite and absolutely impenetrable sole-
noids is what allowed Aharonov and Bohm ([1959]) to discover a possibly 
additional manifestation of non-locality in quantum mechanics,9 since the 
electrons exhibit a dependency on the magnetic flux while remaining in a re-
gion devoid of any such flux. In other words, in this case study, idealizations 
(in the form of an infinitely long and absolutely impenetrable solenoid) played 
in indispensable role in exploring the modal structure of non-relativistic 
quantum mechanics in order to shed light on foundational issues (e.g., local-
ity) and intertheoretic relations.10

One may object that it is misleading to talk about the AB effect as an 
exercise in theoretical exploration via idealization since, in fact, experiments 
have shown that the AB is a real, physical effect (Tonomura et al. [1986]). In 
reply, we draw an analogy with Shech’s ([2013], pp. 1172-1173) distinction 
between concrete and abstract phase transitions: concrete phase transitions 
are the sharp but continuous changes that arise in various thermodynamic 

9 See Healey ([1997], [1999]) and Maudlin ([1998]) for a debate about whether or not the 
AB effect portrays a type of quantum non-locality comparable with Bell inequalities. In this 
paper, we shall refrain from making any comment on this issue.

10 Compare with Massimi’s ([2018, p. 339]) discussion of ‘perspectival modeling’ (original 
emphasis): But what makes ‘perspectival models’ stand out in the broader class of exploratory 
models is a particular way of modeling possibilities … I contend that perspectival models are an 
exercise in imagining, or, to be more precise, physically conceiving something about the target 
system so as to deliver modal knowledge about what might be possible about the target system. 
In a way, they perform hypothetical modeling but of a distinctive modal type – they model 
either epistemic or objective modalities about the target system (within broad experimental and 
theoretical constraints). And this is also the reason that sets them aside from phenomenological 
models, in general, which are designed to model data or phenomena known to exist and be 
actual (indeed phenomenological models are designed to model observed occurrences rather 
than possibilities, as is the case with perspectival models).

We are clearly sympathetic to such a point of view and only add that the type of modal 
exploration that ‘perspectival models’ facilitate—models that are also abstract and/or highly 
idealized—fits well with our first sense of exploration viz., ‘exploring theoretical structure and 
representational capacities.’
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potentials and may be observed in the laboratory. Abstract phase transitions, 
i.e., phase transitions as they are conventionally and theoretically defined, 
are discontinuous changes governed by a non-analytic partition function 
that are used to mathematically represent concrete phase transitions (See 
Figure 3). 

Figure 3. Graphs displaying a first-order phase transition. Graph (a) displays the Gibbs 
free energy (or Gibbs thermodynamic potential) G as a function of the pressure P, graph 
(b) displays the Helmholtz free energy (or Helmholtz thermodynamic potential) A as 
a function of the volume V. Graphs (c) and (d) display functional relations between P and 

V. Based on Stanley ([1971], p. 31).

Abstract phase transitions are defined in idealized infinite systems through 
the thermodynamic limit, in which a system’s volume and particle number 
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diverge.11 Similarly, we must make a distinction between two kinds of (mag-
netic) AB effects. On the one side, the abstract AB effect as it is convention-
ally defined applies only to idealized systems where there is a strictly null 
intersection between the regions occupied by the electron wavefunction and 
the magnetic flux. It cannot, in principle, ever manifest in the laboratory, and 
yet it plays an exploratory role in the senses discussed in this section. On the 
other side, there is the concrete AB effect that has been empirically confirmed 
and shows that a beam of electrons exhibits a type of quantum dependency on 
magnetic flux that is unaccounted for by classical physics. Only recent rigor-
ous results in mathematical physics have shown that the abstract AB effect is 
a good approximation of the concrete one.12

A second sense of exploration that may be brought about through the 
consideration of highly idealized models concerns generating potential ex-
planations, for instance, by envisaging scenarios that, if true, would give rise 
to the kinds of phenomena that constitute the explanandum.13 Given the odd 
nature of the AB effect as a possibly non-local effect, and the fact that the 
idealization of an infinitely long and absolutely impenetrable solenoid cannot 
be instantiated in reality, it is not surprising that early claims of experimental 
verification (e.g., Chambers [1960], Tonomura et al. [1982]) were met with 
skepticism (e.g., Bocchieri and Loinger [1978]). Attempts to understand and 
explain the effect and its experimental manifestation took various forms, 
including potential explanations given within the fiber bundle formalism of 
electromagnetism.14 In this context, the electromagnetic fields are represented 
by the curvature of, and the electromagnetic vector potential is represented by 
a connection on, the principal fiber bundle appropriate for the formulation 
of classical electromagnetism (see Table 1). That is to say, a principal bundle 
where the base space is the spacetime manifold and where the structure group 
is the group of rotations in the complex plane U(1). The relative phase factor 

11 Compare with Kadanoff ([2000], p. 238): ‘The existence of a phase transition requires an 
infinite system. No phase transitions occur in systems with a finite number of degrees of freedom.’ 
See Stanley ([1971]) and Kadanoff ([2000]) for the theoretical treatment of phase transitions.

12 See Ballesteros and Weder ([2009], [2011]) and de Oliveira and Pereira ([2008], [2010], 
[2011]) for such results.

13 See, e.g., Gelfert ([2016], pp. 87-98).
14 See Healey ([2007], Ch. 1-2) for an introduction. 
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iθe  which, according to the theory, gives rise to shifted interference pattern 
that is the AB effect arises as the non-trivial holonomy of a closed curve 
encircling the solenoid.

Table 1. Comparison of terminology between non-relativistic quantum mechanics  
and the fiber bundle formulation of the AB effect.

Electro-
magnetic 

Vector 
Potential

Magnetic 
Field 

Produced by 
Solenoid

Shift In Interference Pattern 
(due to a

Relative Phase Factor)

Space 
or

Spacetime

Non-
Relativistic
Quantum 
Mechanics
Formulation

A B expiθ

C

iqe d
 

= ⋅  
 

A r∮
3

Or
4

Fiber 
Bundle 
Formulation

Connection Curvature Non-trivial Holonomy Base 
Space

It is now possible to generate a potential (although non-actual) explana-
tion of the AB effect. In particular, one may arrive at a non-trivial holonomy 
by considering a fiber bundle base space that is non-simply connected. The 
rationale for this explanation is that vanishing electromagnetic fields around 
the solenoid correspond to a curvature that is zero. Zero curvature means that 
‘the connection on this bundle is flat everywhere in this region’ (Healey [2007], 
p. 42). Moreover, if ‘there is a nontrivial holonomy . . . and if the connection is 
flat, the base space [representing physical space] must be nonsimply connected’ 
(Batterman [2003], p. 542; original emphasis). In other words, a non-simply 
connected base space, which represents physical space (as opposed to the 
electron configuration space), also allows one to derive a non-trivial holonomy. 
However, while a derivation based solely on such topological considerations 
may be considered a potential explanation of the non-trivial holonomy, it is 
not the actual explanation of the non-trivial holonomy that represents the 
AB effect. After all, the AB effect is a dynamical effect that depends on the 
interaction between the electron beam and the solenoid (not on holes in 
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physical space or on a particular mathematical formalism). The upshot is that 
considerations of the highly idealized (abstract AB effect) model, within the 
fiber bundle formalism, have allowed us to discover a potential explanation 
of the non-trivial holonomy in terms of a non-simply connected base space.

This concludes our discussion of the AB effect in which we emphasized 
two senses of exploration: exploring the modal structure of a theory for the 
purposes of gaining insight into foundational issues and intertheoretic rela-
tions, and generating potential explanations. 

3. Anyons and Fractional Quantum Statistics

3.1. Case Study: Anyons

Consider a collection of non-interacting, identical particles in thermal 
equilibrium. What are the possible ways that such a collection may occupy 
a set of available discrete energy states? Roughly, quantum and statistical 
mechanics tell us that there are two such ways, and that the expected number 
of particles in some specific energy state will depend of the type of particle 
at hand. Bosons manifest a behavior consistent with Bose-Einstein statistics, 
while fermions distribute themselves according to Fermi-Dirac statistics. This 
division into particle types, along with corresponding statistics may be cap-
tured by what has become known as the symmetrization/anti-symmetrization 
postulate: ‘The states of a system containing N identical particles are necessar-
ily either all symmetrical or all antisymmetrical with respect to permutation 
of N particles’ (Messiah [1962], p. 595).15 That is to say, if a collection of N 
identical particles is represented by the quantum state Ψ(1,2,…,N) and the same 
collection with, say, particles 1 and 2 permuted is represented by Ψ(1,2, …,N), then 
the symmetrization/anti-symmetrization postulate tells us that state must be 
related in the following manner:

Ψ(1,2, …,N) = eiθ Ψ(1,2, …,N),

15 See Earman ([2010]) for a discussion.
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where the exchange phase θ can take on a value of θ = 0 for a system of bosons 
with a corresponding phase factor eiθ = +1 and a symmetric quantum state, or 
it can take a value θ = π for a system of fermions with a corresponding phase 
factor of eiθ = –1 and an antisymmetric quantum state.

There are two fundamental frameworks for understanding permutation 
invariance in quantum mechanics, which ground the symmetrization/anti-
symmetrization postulate and its consequences, viz., that there are two basic 
types of particles and quantum statistics. Following Landsman ([2016]), we 
will call the first, due to Messiah and Greenberg ([1964]), the operator frame-
work, and the second, due to, among others, Laidlaw and DeWitt ([1971]), 
Leinaas and Myrheim ([1977]), the configuration space framework. Landsman 
([20136]) has argued that, in dimensions greater than two, both frameworks 
are equivalent and give equivalent verdicts regarding possible particle types 
and statistics. However, it turns out that in two dimensions, according to the 
configuration space framework, the exchange phase can take on any value. 
This allows the framework to represent bosons and fermions, as well as other 
particles known as ‘anyons,’ which are said to exhibit ‘fractional quantum 
statistics.’16

Recall, the manner by which a collection of identical particles occupies 
energy states will depend on the kind of quantum statistics that such a col-
lection manifests, which in turn depends on the type of particle considered. 
Particle type is decided by how such a collection behaves under permutation, 
and such behavior is captured by the value of the exchange phase θ and the 
corresponding phase factor eiθ. In short, on the configuration space framework, 
two central theorems (which may be found in Morandi [1992], pp. 119-120) 
dictate that the phase factor eiθ is equivalent to the one-dimensional unitary 
representation γ of the fundamental group π1 of the configuration space Q  
of the collection of identical particles, symbolized by γ = eiθ.17 It has been 

16 The name is due to Nobel laureate Frank Wilczek ([1982]). Note that anyons and frac-
tional statistics have nothing to do with so-called paraparticles and parastatistics (which arise 
from higher dimensional representations of the permutation group). For more on anyons see 
Wilczek ([1990]), Khare ([2005]), Shech ([2015a]) and references therein.

17 See Hatcher (2002) for relevant background in algebraic topology. Roughly, the ‘one-
dimensional unitary representation’ will allow us to represent groups with numbers. The ‘fun-
damental group,’ also known as the first homotopy group, is a topological invariant that allows 



206 Elay Shech, Axel Gelfert

shown by Artin ([1947]), Fadell and Neuwirth ([1962]), and Fox and Neu-
wirth ([1962]) that the fundamental group for the two-dimensional (d = 2) 
and three-dimensional (d = 3) cases are given by:

π1  (Q) = BN  for  d = 2
π1  (Q) = SN  for  d = 3

where SN is the permutation group and BN is the Braid group. In other words, 
in three dimensions the fundamental group of the configuration space is 
the (finite and discrete) permutation group SN which admits of the known 
one-dimensional unitary representation: γ = ±1 (+1 for bosons and –1 for 
fermions). In two-dimensions, on the other hand, the fundamental group 
is the (infinite and discrete) braid group BN with one-dimensional unitary 
representations giving rise to phase factors of the form: γ(θ) = eiθ where  
0 ≤ θ ≤ 2π so that the exchange phase can take on a continuous range of fac-
tors allowing for bosons, fermions, and anyons.

In the remaining part of this subsection, we will be working through the 
configuration space framework’s treatment of the simple two-particle scenario 
in order to better convey how the appeal to the d = 2 idealization brings about 
the novel mathematical structure needed to represent anyons. Readers unin-
terested in such technicalities may skip to the next subsection without loss of 
philosophical continuity.

The fundamental group of the configuration space of the simplest scenario 
of two particles N = 2  in the d = 2 and d = 3 cases is as follows:

( )
2

1  1  1
2

   π π RP Z
S

 ∆
= =  

 

 
for d = 2

for d = 3,

( )
3

1  1  2 2
2

     π π RP Z
S

 ∆
= =  

 

 
for d = 3,

one to classify topological spaces according to whether paths or loops in the space can be 
continuously deformed into each other. For instance, all paths can be continuously deformed 
into each other, and all loops can be shrunk to a point, in three-dimensional Euclidean space 

3 . Such a space is said to be ‘simply connected.’ The electron configuration space in the context 
of the abstract AB effect, 3 \Sin, is not simply connected because loops encircling the region Sin 
cannot be shrunk to a point.
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where S2 is the permutation group for two particles, Δ an excised set of di-
agonal points that represent points where particles coincide, Z is the cyclic 
group of order one, i.e., the infinite group of integers under addition. Z2 is 
the cyclic group of order two, i.e., it is the multiplicative group of, say, 1 and 

–1. RP1  and RP2 are the real projective one- and two-dimensional spaces, 
respectively.

Pictorially, for the d = 3 case the configuration space reduces to the real 
projective space in two dimensions RP2. This can be visualized as the surface 
of a three-dimensional sphere with diametrically opposite points identified 
(see Figure 4) or a hemisphere with opposite points on the equator identified 
(see Figure 5). Consider three scenarios, corresponding to three paths A, B, 
and C in configuration space including no exchange (Figure 4a), exchange 
(Figure 4b), and a double exchange (Figure 4c), respectively. 

Figure 4. The real projective space in two dimensions RP2, represented by a sphere with 
diametrically opposite points identified. Cases (a), (b), and (c), correspond to no exchange, 

exchange, and double exchange, respectively.

Concentrating on the no-exchange case (Figure 4a). We trace a path A 
in configuration space in which the two particles move and return to their 
original positions. Path A is a loop in configuration space, with the same 
fixed start and end points, which can be shrunk to a point. This corresponds 
to a trivial homotopy class in which the phase factor is trivial. 

Moving onto the exchange case (Figure 4b), we start at one end of the con-
figuration space and trace a path B to its diametrically opposite point. This rep-
resents an exchange or permutation between the two particles. Notice that since 
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diametrically opposite points are identified (because the particles are identical), 
this path is actually a closed loop in configuration space. However, since the 
start and end points of Figure 4b are fixed, the loop cannot be shrunk to point. 
This corresponds to a non-trivial homotopy class with a non-trivial phase factor.

The double-exchange (Figure 4c) case includes tracing a path C in con-
figuration space similar to that of B, but then tracing around the sphere back 
to the original starting point. Path C is a closed loop in configuration space 
that can be shrunk to a point, and so it is in the same homotopy class of path 
A with a corresponding trivial phase factor. Equivalently, we may visualize the 
paths A, B, C on a hemisphere with opposite points on the equator identified 
as in Figure 5, where paths A and C can be continuously deformed to a point 
but path B cannot because of the diametrically opposed fixed start and end 
point on the equator.

Figure 5. The real projective space in two dimensions RP2, represented by the northern 
hemisphere with opposite points on the equator identified.

On the other hand, in the context of the d = 2 case, we are dealing with the 
real projective space in one dimension RP1. We can visualize this configuration 
space as a circle with diametrically opposite points identified (see Figure 6). 
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Again, consider three paths A, B, and C in configuration space that correspond 
to no exchange (Figure 6a), exchange (Figure 6b), and a double exchange 
(Figure 6c), respectively. Path A traces a closed loop in configuration space 
(where the particles move but then return to their original positions with no 
exchange) which can be continuously shrunk to a point and has a correspond-
ing trivial phase factor (as in the d = 3 case of figures 4a and 5a). Next, we 
trace a path B across half the circumference of the circle. Since diametrically 
opposed points are identified, this represents a particle exchange (Figure 6b). 
Path B traces a closed loop in configuration space that cannot be continuously 
shrunk to a point and has a corresponding non-trivial phase factor (as in the 
d = 3 case of figures 4b and 5b).

Figure 6. The real projective space in one dimension RP1, represented by a circle with dia-
metrically opposite points identified. Cases (a), (b), and (c), correspond to no exchange, 

exchange, and double exchange, respectively.

The main difference between the d = 3 and d = 2 cases arises when we 
consider path C (Figure 6c), in which the particles are permuted twice, repre-
sented by traversing the entire circular configuration space. Path C is a closed 
loop in configuration space but, unlike the d = 3 case, it cannot be shrunk 
to a point because the circle itself (so to speak) acts as an obstructive barrier. 
Moreover, path C cannot even be continuously deformed to overlap with path 
B. This means that, not only is the phase factor corresponding to the two paths 
non-trivial, but each path has a different phase factor for each path belongs to 
a different homotopy class. In fact, for every traversal (in configuration space) 
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of half a circle, we get a closed loop that is in its own homotopy class.18 In 
other words, by transitioning from three dimensions to two dimensions, we 
have transitioned from a doubly connected space to an infinitely connected 
space, and it is this change in topology that allows for the fractional statistics 
and the emergence of anyons.

3.2 Exploring Fractional Statistics

The configuration space framework for permutation invariance in quantum 
mechanics exemplifies, in a very direct way, the manner by which an idealization 
allows one to explore the modal structure of a theory and its representational 
capacities. The transition from d = 3 to d = 2 is an example of an idealization 
since two-dimensional systems, strictly speaking, do not exist. However, it is 
exactly by exploring two-dimensional systems that we discover the full spec-
trum of the exchange phase, as well as the fact that quantum mechanics has the 
representational capacities to represent more than just bosons and fermions. 
The novel mathematical structure that emerges in two-dimensions is the braid 
group BN, with its corresponding one-dimensional unitary representation γ(θ) 
= eiθ where 0 ≤ θ ≤ 2π. In three-dimensions, by contrast, the structure of the 
permutation group SN and its one-dimensional unitary representation γ = ±1 is 
too sparse to represent anyons. Moreover, it is by appealing to the d = 2 ideali-
zation that we can clearly differentiate between the operator and configuration 
space frameworks, since it is only in d = 2 that the latter differs from the former 
in its verdict regarding possible particle type with corresponding statistics. 

An additional sense of exploration, generating potential explanations, 
also arises in this context. Currently, the empirical evidence confirming the 
existence of anyons is inconclusive,19 but physicists believe that anyons or ap-

18 If we symbolize this by π1(Path) we get that π1(Path A) = 0 for the trivial homotopy 
class, but the rest of the paths will be elements of non-trivial homotopy classes:  π1(Path B) = 1,  
π1(Path C) = 2, … and so on, so that we generate all of the integers Z. Negative integers corre-
sponding to traversal of the circular configuration space in the opposite direction.

19 Recent supposed confirmations include Camino et al. ([2005]), but there is no consensus 
in the physics community regarding the reality of anyons and fractional statistics (instead of, 
say, composite fermions or composite bosons).



The Exploratory Role of Idealizations and Limiting Cases in Models 211

proximate anyons are likely to manifest in what is known as fractional quantum 
Hall effect (FQHE) systems.20 Insofar as anyons are found in FQHE systems, 
which are built to constrain the dynamics of the system to approximately 
two-dimensions, the configuration space framework allows for one potential 
explanation of such particles. That is to say, if the idealized two-dimensional 
systems that allow for anyons and fractional statistics (via the configuration 
space framework) are good approximations of real FQHE systems, then it is 
because of the approximate two-dimensional nature of FQHE systems that 
anyons may emerge in the first place. Ultimately though, since the results 
derived from the configuration space framework hold for strictly two-di-
mensional systems and not approximate ones (such as thin layers embedded 
in three-dimensional space), such an explanation remains only a potential 
one at this time.

Another example of generating potential explanations can be found in the 
so-called flux tube model of the anyon introduced in Frank Wilczek’s ([1982]) 
original paper on the subject. The goal is to explain how a composite particle 
that is neither a boson nor a fermion could come about. Here an anyon is de-
scribed by spinless particle of charge e in the xy-plane orbiting around a very 
thin and long solenoid with magnetic flux Φ, set perpendicular to the plane, 
in the direction of the z-axis (see Figure 7). We are then asked to appeal to 
further idealizations:

In the limit where the solenoid becomes extremely narrow and the distance between 
the solenoid and the charged particle is shrunk to zero, the system may be considered 
as a single composite object — a charged particle-flux tube composite. Furthermore, 
for a planar system, there can be no extension in the z-direction. Hence, imagine 
shrinking the solenoid along the z-directions also to a point. The composite object is 
now pointlike… (Rao [2001], p. 15)

20 See Chakraborty et al. ([1995]), Ezawa ([2013]), and references therein for more on both 
the integer and fractional quantum Hall effects. For philosophical assesments see Bain ([2013], 
[2016]), Guay and Sartenaer ([2016a], [2016b]), Lancaster and Pexton ([2015]), Lederer ([2015]), 
and Shech ([2015], [2018b], [2018c]).
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Figure 7. The Flux-tube model of the anyon. A spinless charge e  particle orbiting around 
a thin and long solenoid with magnetic flux Φ.

It is difficult to think of this highly idealized model as the actual explana-
tion of how an anyon, thought of as a composite particle, may come about. 
Nevertheless, the flux tube model of the anyon can be taken as generating 
a potential explanation – more specifically, a  ‘how-possibly’ explanation, 
which demonstrates how a particular effect may be brought about in principle, 
without committing itself to the claim that this is how it was in fact brought 
about21 – and, as such, it may point the way towards more realistic models to 
be developed in the future. 

The third sense of exploration that we wish to discuss concerns proof-of-
principle demonstrations, specifically of a kind that establishes the viability 
of a certain type of approach or methodology for the purpose of generating 
potential representations of target phenomena. In this sense, our case study 
shows that it is theoretically fruitful and perhaps empirically viable to consider 
the physics of systems that are not three-dimensional. This methodology is 
in part vindicated via the theoretical discovery of anyons and has led to the 

21 For some historical background on the notion of ‘how-possibly’ explanations, see Gel-
fert ([2016], p. 92); for a more substantive discussion, which links the distinction between 
‘how-possibly’ and ‘how-actually’ explanations to different explanatory contexts arising from 
contrasting ways of framing a problem, see Bokulich ([2014]).
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exploration of physics of various two- and one-dimensional systems that may 
perhaps be manifested approximately in the laboratory. In fact, (non-Abelian) 
anyons, such as bound states of the Mayorana Fermion, are the best candidates 
from which to build quantum computers (Nayak at al. [2008]), 22 and are regu-
larly discussed in introductory textbooks to the subject (e.g., Pachos [2012]). 
Also, if the existence of anyons is empirically confirmed, we will know that the 
configuration space framework is the correct framework for understanding 
permutation invariance in quantum mechanics (and vice versa). This shows 
how an idealization (or idealized model) may establish that a certain type of 
methodology, namely, a framework for permutation invariance in quantum 
mechanics, is able to generate a potential representation of anyons (whereas 
the operator approach cannot).

The last sense of exploration that we wish to discover concerns using 
idealizations and models to assess the suitability of target systems. We will 
elaborate on this sense in the following section. Here we only wish to intro-
duce the idea with some background history regarding anyons. In particular, 
anyons were first discussed in the literature solely as theoretical constructs. 
Before attempts were made to apply such constructs to FQHE systems, there 
were different target systems that physicists were hoping fractional statistics 
could shed light on:

Surely the most dramatic result of the study of anyon statistics […] has been the 
demonstration [of] a new mechanism of superfluidity (and, for charged anyons, super-
conductivity). This superfluidity is quite a robust consequence of fractional quantum 
statistic at appropriate values of the fraction. […] [It] is tempting to speculate that 
the anyon mechanism of superconductivity will shed light on the copper oxide high 
temperature superconductors. Whether or not this speculation works out, the mecha-
nism is of considerable theoretical interest and will undoubtedly play an important 
role in physics in the future. (Wilczek [1990], p. 325)

In other words, it was first speculated (and hoped) that anyons could 
shed light on high-temperature superconductivity. When later investigations 
did not bear fruit in this regard, physicists did not reject anyons altogether 
as useless idealizations. Instead, a new target system was sought: specifically, 

22 See Mourik et al. ([2012]) for recent experimental results.
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FQHE systems. Hence, we see how the application of idealization and the 
investigation of an idealized model such as the flux tube model of the anyon 
may lead us to reassessments of the suitability of target systems.

4. The Hubbard Model of the Mott Phase Transition

4.1. Case Study: Hubbard Model

Consider a solid, such as a macroscopic piece of iron, made up of atoms 
at specific sites in a crystal lattice, and electrons which are either bound to 
specific atoms, shared between them, or moving about in the solid, as happens 
in electric conductors where an external electric field can easily bring about 
an electric current. Whereas in the previous two cases discussed in this paper, 
the quantum systems were constrained only by geometry, dimensionality, or 
external fields (as in the Aharonov-Bohm effect), in many-body systems such 
as crystal domains in a metal, a vast number of atoms and electrons interact 
with each other. Of special significance are substances such as iron, nickel, 
and cobalt, not only because they are ingredients of various technologically 
important alloys, but also because they exhibit strongly correlated behavior: 
the Coulomb interaction between the negatively charged electrons in such 
materials is so strong that the one-particle picture for calculating the electronic 
band structure, which governs many important physical characteristics, is no 
longer sufficient to describe them.23 Such systems exhibit salient many-body 
effects, which manifest themselves macroscopically, e.g. in ferromagnetic be-
havior, when a solid exhibits a permanent magnetization even in the absence 
of an external field. Due to their large number (~1023) of interacting particles, 
strongly correlated electron systems cannot easily be studied on the basis of 
theoretical ‘first principles’, but require the use of many-body models.24

As a model of strongly correlated electrons in a crystal lattice, the Hubbard 
model has become one of the most extensively studied models in condensed 

23 For relevant background material in solid state/condensed matter physics see standard 
textbooks such as Ashcroft and Mermin ([1976]).

24 For a review, see Gelfert ([2015]). 
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matter physics. Commonly, electronic states in a solid may be classified into 
those that are localized, i.e., centered around lattice sites and akin to atomic 
states, and delocalized (itinerant) states, i.e., Bloch states filled by electrons in 
accordance with Fermi statistics. Originally formulated for the study of col-
lective magnetic order in solids, the Hubbard model is now widely employed 
for the study of various correlation effects in systems with such itinerant 
electrons. Its uses have proliferated beyond the question of the origins of 
spontaneous magnetism, and now include the study of metal-insulator tran-
sitions, high-temperature superconductivity, lattice gases, organic molecules 
and nanoparticles. While, at the descriptive level of scientific practice, this 
proliferation already points towards the exploratory utility of the Hubbard 
model, the specific character of exploration involved can be made more precise 
by looking at how features of the model have enabled a reassessment of its 
initial intended target. This will be done in the second subsection (4.2); first, 
let us motivate and summarize the Hubbard model.25

The Hubbard model was first developed for systems with narrow energy 
bands, in which the electrons, though delocalized and mobile, are still likely 
to be found near the lattice sites, i.e., the atoms (ions) that they are associated 
with. At a general level, the Hamiltonian of any system consisting of electrons 
and ions can be expressed as the sum of three components

H = Hkin + Hie + Hee

where the first term indicates the purely kinetic energy of the electrons, the 
second term the interaction between the electrons and the lattice potential, 
V(r), due to the ions that make up the crystal lattice, and the third term com-
prises the electron-electron interaction. Assuming the lattice potential V(r) to 
be strong and the mobility of the electrons to be small (though non-negligible), 
the sum of the atomic (single-particle) Hamiltonians at site i, ( )i

ath , can still be 
regarded as an acceptable representation of the system, at least near the lattice 
sites. (One way to think of this as a starting point for model-building is to 
regard the atoms as ‘too far apart’ to yet ‘feel’ any forces acting between them.) 

25 For the canonical derivation due to Hubbard, see his ([1963]).
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The non-relativistic Schrödinger equation then is ( ) ( ) ( )i
at n i n n ih φ ε φ− = −r R r R , 

where φn is an atomic wave function and n signifies the relevant set of quantum 
numbers. In the case at hand, the overlap between atomic wave functions 
associated with different lattice sites is assumed to be small, and the wave 
function will be centered strongly around the respective lattice sites.

The atoms, of course, form a crystal lattice, so electrons will not only feel 
the atomic Hamiltonian, but also the lattice potential. In the non-interacting 

parts of the Hamiltonian, ( )
0 0

1

N
i

kin ie
i

H H H h
=

= + =∑ , one therefore needs to 

include the lattice potential, ( ) ( ) ( )0
i i

ath h V= + r  , which gives rise to the ‘non-
atomic’ single-particle Schrödinger equation:

( ) ( )0 n n nh ψ ε ψ=k kk r

In order to simplify the problem, the wave function nψ k can be approximated 
by the atomic wave functions:

( ) ( )
1

1 j
N

n n j
i j

ψ e φ
N =

= −∑ ikR
k r r R .

While this approximation introduces some degree of error, the assumption is 
that the total error will be tolerable, since the approximation is nearly exact 
near the lattice sites (where the ions render the dynamics of the system almost 
‘atom-like’) and becomes substantial only where the value of φn is already very 
small. It is also worth noting that the formula for nψ k satisfies Bloch’s theorem, 
according to which, in an idealized system with periodic lattice potential, 
the wave function should be invariant with respect to translation, except for 
a phase factor: ( ) ( )

mm
n nψ e ψ+ = ikR
k kr R r .

The (general) Schrödinger equation for the Bloch functions nψ k can now 
be evaluated using the approximation, given in the previous formula, by the 
atomic wave functions. This results in a compact formula for the Bloch ener-
gies,
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where ( ) ( ) 23
n nv d rV φ= ∫ r r  reflects the influence of the lattice potential on 

a single electron, and the overlap integrals, ( ) ( ) ( )3 *j
n n n jα d rφ φ= ∫ −r r R  and 

( ) ( ) ( )3 *j
n n nγ d rφ V φ= ∫ r r ( )j−r R , which are a measure of the mutual influence 

between electrons at different lattice sites, can be assumed to be very small in 
value for any 0j ≠R  , so that higher-order terms can be neglected. Restricting 
interactions to those between nearest neighbors (‘n.n.’) one thus arrives at

( ) ( ) ( ) ( ). .1
0

. .

n nin
n n

n n

ε T γ e= + ∑
kR

k

which can be translated back into the formalism of creation and annihilation 
operators, with the non-interacting part of the Hamiltonian reducing to the 

simple formula †
0 ij iσ jσ

ijσ

H T a a=∑  where the Tij are the hopping integrals associ-

ated with those contributions arising from the movement of a particle at site 
j to another site i.

The interacting part of the Hamiltonian can similarly be expressed in 
terms of creation and annihilation operators:

( ) † †
' '

1 ;
2ee iσ jσ lσ kσ

ijkl

H v ij kl a a a a= ∑
where the matrix element v(ij; kl) is constructed from atomic wave functions:

( )
( ) ( ) ( ) ( )* *2 1 2 2 13 3

1 2
0 1 2

;
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i j l kφ φ φ φev ij kl d r d r
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− − − −
=

−
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.
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The matrix element bears a close resemblance to the classical Coulomb 
potential, but it also takes into account the quantum effects between different 
particles, as indicated by the ‘mixed’ integral. Because of the small overlap 
between atomic wave functions centered on different lattice sites, the intra-
atomic matrix element U = v(ii; ii) can be expected to strongly dominate the 
dynamics of interaction; neglecting, as a final approximation, all other matrix 
elements, simplifying the operator combination using the number operator 

†
iσ iσ iσn a a=  , and combining the non-interacting and interacting parts of the 

Hamiltonian, gives the standard Hubbard Hamiltonian:

†
,ˆ ˆ ˆ ˆ1

2ij iσ jσ iσ i σ
ijσ iσ

H T a a U n n −= +∑ ∑ .

The Hubbard model contains only a small number of parameters, most 
explicitly, the ratio between the Coulomb repulsion and the kinetic energy 
of the electrons and, less overtly, the filling of the energy band and the geom-
etry of the crystal lattice (which is implicit in the summation range, e.g. by 
performing the sum over nearest neighbors in a unit cell).

Figure 8. Schematic representation of the processes modeled by the Hubbard Hamiltonian: 
U is the Coulomb repulsion experienced by two electrons (of opposite spin) occupying 
the same site in a crystal lattice; Tij are the hopping integrals that apply to the movement 

of an electron from one lattice site, j, to another, i.
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Yet this has proven to be sufficient to render the Hubbard model one of 
the simplest and most fruitful frameworks for modeling itinerant, strongly 
correlated electrons in crystal lattices. As a recent Nature Physics editorial 
on ‘The Hubbard Model at Half a Century’ puts it, while the Hubbard model 
was initially ‘introduced to provide an explanation for the itinerant ferromag-
netism of transition metals, such as iron and nickel, […] the past 50 years have 
seen its relevance go far beyond that original context’, and the (anonymous) 
authors express their confidence that, even after half a century, the model 
‘should be a stimulus for further explorations’ (‘The Hubbard Model’, [2013], 
p. 523; italics added).

4.2 Exploration in the Hubbard Model

The exploratory utility of the Hubbard model is partly due to its relative 
simplicity and the ease with which it can be ‘customized’ to fit single-band and 
multiband scenarios, and phenomena beyond spontaneous magnetism, such 
as high-temperature superconductivity and artificial lattices of cold atoms. It 
has also given rise to other models, such as the t-J model, which can be derived 
from the Hubbard model in the limit of large U via an (operator-level) trans-
formation, in which doubly-occupied electron states are neglected: that is, an 
electron ‘hops’ from one lattice site to another (transferring energy t, similar 
to what happens in the Hubbard model), but only when that destination site 
is empty. Higher-order processes, in particular, such as two electrons hop-
ping onto the same (previously unoccupied) lattice site, are excluded on this 
picture.26 Yet the Hubbard model’s simplicity and ease of adaptability alone 
do not exhaust its exploratory features. In this subsection, we shall discuss 
a salient example of the fourth type of exploration distinguished earlier, viz. 
exploration via assessing the suitability of the target system. 

The suggestion that exploration may consist in holding the model and its 
representational means fixed, while searching for target systems which the 
model may be able to adequately describe, might at first seem to put the cart 
before the horse: should we not try to find models that fit our target systems, 

26 See Spałek ([2007]) for more on the t-J model.
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rather than ‘shopping around’ for target systems that fit our preferred models? 
(On this point, see Gelfert 2006, Section 4.5.4.) In response, two points come 
to mind. First, in the early days of research, before a good theoretical grasp 
of a phenomenon has been gained, it may be unclear whether the putative 
phenomenon is indeed the result of a more stable, reproducible set of circum-
stances. As noted in our earlier discussion of exploration in the Aharonov-
Bohm effect (Section 2.2) and of fractional quantum statistics (Section 3.2), 
it often takes time for theoretical descriptions and experiments to become 
sufficiently refined to establish that a phenomenon is indeed what physicists 
call a recurrent ‘effect’. In this early stage of research, commitment to putative 
target systems and phenomena is tentative, and one’s choice of target system or 
phenomenon will be subject to revision. Second, choices of target systems for 
a given model are not made arbitrarily, but often are the results of reassessing 
a model’s target system in the light of new findings. That is, model equations 
are not deployed arbitrarily to represent a new target; rather, the new target 
suggests itself on the basis of findings generated in the course of a sustained 
exploration of the model’s utility for describing the initial target. This (fourth) 
sense of exploration, we submit, can be illustrated in the Hubbard model’s 
evolution from a model for describing itinerant electrons in transition metals 
(and other conductors) to a potential model for insulators of a particular kind, 
the so-called Mott insulators.

According to A.H. Wilson’s metal/non-metal criterion, an insulator (or 
semiconductor) is characterized by having either completely filled or com-
pletely empty energy bands, separated by an energy gap that prevents elec-
trons from becoming mobile (unless a significant external field is applied).27 
A metal, by contrast, has partially filled bands, such that even the slightest 
external perturbation is enough to excite an electron into an (infinitesimally 
higher) empty state in the same energy band. Due to such ‘conduction bands’, 
metals are able to conduct electricity, whereas insulators are not. As discussed 
in the previous section, the Hubbard model, with its emphasis on the ease 
with which itinerant electrons can ‘hop’ from one lattice site to the other, was 

27 See Wilson ([1936]) for the original discussion, and Martin ([2004], pp. 40-44) for a more 
recent textbook presentation.
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initially intended to model ferromagnetic conductors such as nickel and iron 
(rather than insulators). Historically, however, it quickly turned out that the 
classification into metals and non-metals was not as clear-cut as Wilson’s 
criterion had suggested. Thus, as early as the 1930s, it was shown that certain 
transition-metal oxides were insulators, even though their crystalline struc-
ture suggested that they had partially filled bands and should be conductors.

Theoretical physicists, including Rudolf Peierls, Lev Landau, and Nevill 
Mott, explored the possibility of the breakdown of Wilson’s criterion being 
the result of correlations associated with the repulsive Coulomb interaction 
between the electrons. Mott, in particular, clarified the metal-insulator cri-
terion in relation to transition-metal monoxides, and the problem became 
known as the puzzle of ‘Mott insulators’ (Mott [1949]). Subsequently, in the 
1950s, it was realized that all Mott insulators are antiferromagnets and remain 
insulators even above the Néel temperature, the critical temperature above 
which antiferromagnetic order is destroyed and a solid turns into a paramag-
net. While it was realized, notably by John Slater, that antiferromagnetism 
led to a ‘splitting up’ of electron bands, thereby increasing the chances for 
the emergence of energy gaps characteristic of insulators, numerical simula-
tions indicated that this alone could not explain the behavior of Mott insula-
tors. Exactly why substances that, on the basis of their crystalline structure 
and electronic characteristics, should be expected to conduct electricity are 
nonetheless insulators – and why these Mott insulators are antiferromagnets 

– remained an open question, and a lively debate ensued within theoretical 
condensed matter physics in the decades to come. This was compounded by 
the fact that certain types of substances, such as transition metal oxides, dis-
played a transition from insulating to metallic behavior – a ‘Mott transition’, 
as it became known – as the result of certain factors (e.g. slight modifications 
of its composition known as ‘doping’). 

With the Hubbard model having been developed as a model of ferro-
magnetic metals, one might wonder how it could possibly shed light on the 
phenomenon of Mott insulators – which, after all, are antiferromagnetic insula-
tors – and their associated phenomena. Yet, in recent years, it has become one 
of the most extensively studied models for exploring the Mott metal-insulator 
transition and related phenomena, attesting to the exploratory power of the 
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Hubbard model, which in this case manifests itself in a thoroughgoing reas-
sessment of the range of its intended targets. We are, of course, not suggesting 
that the Hubbard model is no longer used for its original purposes – it remains 
the model of choice for many researchers interested in the behavior of ferro-
magnetic substances and strongly correlated electron systems in model – but, 
rather, that the range of its target systems has been expanded to include types 
of targets that could not have been foreseen by, and indeed would likely have 
seemed outlandish to, its initial proponents. 

Why consider the Hubbard model a potential model of Mott insula-
tors in the first place? This latest turn in the Hubbard model’s varied career 
came as something of a surprise to many condensed matter physicists and 
is due to an exact mapping that obtains in a limiting case of the standard 
Hubbard model. In particular, it results from the limit of strong interactions, 
when U is much larger than the other matrix elements (W). Evaluating the 
model using second-order perturbation theory, the multiple degeneracy of 
the ground state of the model is lifted and, at half-filling (n = 1), only the 
following effective Hamiltonian remains as the limiting case of the Hubbard 
model:

( )
1 2

1 2
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ˆ ˆ

eff
t

H
U≠

−  = ⋅ − 
 ∑ R R

R R

R R
S S

which is rendered a compact formula thanks to the use of spin operators  
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this limiting case is identical to another much-studied quantum model, the 
antiferromagnetic Heisenberg model
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with ( ) ( ) 2
1 2 1 22 /J t U− = −R R R R .28 The Heisenberg model, in turn, has 

long been known as ‘the “standard model” for the description of magnetic 
insulators’ (Gebhard [2000], p. 75). 

The situation, then, is this: whereas for U = 0, the Hubbard model at 
half-filling describes a metal, for U>>W it maps onto the standard model of 
antiferromagnetic insulators. This behavior, which could not easily be ‘read 
off ’ from the model’s original formulation, and certainly played no role in 
the type of derivation given in the preceding subsection, provides a stunning 
example – or so we believe – of the exploratory potential that is afforded by 
some models in virtue of their structure and the relations they stand in with 
other models.29 For, having convinced themselves that the Hubbard model at 
half-filling, and for low interaction strength U, describes a metal, and for very 
large values of U behaves like an antiferromagnetic insulator, researchers ‘are 
confident that the model is indeed capable of describing a Mott transition at 
a critical interaction strength Uc , somewhere in between.

Once again, exploration is borne out to be a fruitful strategy in model-
based research – this time, this time by being open towards the reconsidera-
tion of one’s target system. This, together with the construction of limiting 
cases of highly idealized models, led to a widening of the potential domain of 
applicability of the Hubbard model to include not only ferromagnetic metals, 
but also Mott insulators such as the transition-metal oxides, in which the 
phenomenon of Mott insulation was first observed.

5. Conclusion

We have presented three case studies, which illustrate our suggestion that 
idealizations, in the construction of models or by considering limiting cases, 
play exploratory roles in science. To end, we first want to consider a general 

28 For details of the derivation, see various textbooks on quantum magnetism, e.g. Gebhard 
([2000]).

29 Gelfert ([2009]) discusses this case, but relates it primarily to the role of rigorous results 
in establishing ‘cross-model’ support, rather than to its exploratory uses.
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objection to our account, and then wish to reflect on how Michael Weisberg’s 
([2007], [2013]) recent taxonomy of idealizations and models compares with 
our case studies.30

One of the main worries associated with taking idealizations and models 
to play a substantive exploratory role in science, is that it may seem that the 
concept of exploration is so generic as to border on the trivial. For instance, 
concerning the exploration of theoretical structure, one may raise the fol-
lowing objection: Is it the case that whenever one considers what quantum 
mechanics says about any idealized system, no matter how unrelated to actual 
scientific investigations, one is ‘exploring’ the structure of quantum mechan-
ics? If so, haven’t we trivialized the notion of exploration? Should there not 
be any constraints on what counts as a bona fide exploration? Yet, in reply, 
it is worth emphasizing that the notion of ‘exploration’ is not a free-for-all: 
Whether in relation to experimentation, scientific modeling, or, as in our case, 
idealizations and limiting cases, exploration is marked by recurring strategies, 
not by haphazard arbitrariness. Indeed, this is why the case studies we have 
presented are important: They demonstrate not random moves in the inves-
tigation of salient scientific questions, but structured approaches that exhibit 
continuity and stability.

Perhaps, however, the objection is meant to be more specific, targeting not 
the various forms that exploration in science may take, but the lack of specific 
criteria of success. Yet, much the same could be said about other basic concepts 
such as scientific explanation. For one, we readily accept that there are vari-
ous notions of scientific explanation, e.g., causal-mechanical, unificationist, 
deductive-nomological, so that what counts as a successful explanation will 
greatly depend on which notion is involved and the type of why-question 
one is looking to answer. Similarly, it is to be expected that there will be vari-
ous notions of exploration. Second, whether or not an argument proffered 
merely as a potential explanation counts as a good one will not only depend 

30 We wish to give John Earman credit for first bringing to our attention (in conversation 
and correspondence) the idea that Weisberg’s ([2007], [2013]) account may well be wanting. 
Earman is the first to argue that the three-fold scheme offers a distorted view of the story of 
the AB effect. Here we extend and elaborate on his insights to cover the anyon and Hubbard 
model case studies.



The Exploratory Role of Idealizations and Limiting Cases in Models 225

on whether it turns out to be an actual explanation, but also on its merits in 
terms of explanatory power, novelty, simplicity, etc., and historical context 
(e.g., on whether the explanation does justice to the well accepted science of 
the time). And just as there are better and worse potential explanations, some 
exploratory moves in science will be more or less fruitful. As we have seen 
throughout the brief historical sketches included in our case studies, scientists 
are often keenly aware of which exploratory moves are further removed from 
the phenomena, and which stand a realistic chance of leading to the genuine 
discovery of new phenomena, effects, and explanations.

Finally, we wish to reconsider some of the philosophy of science literature 
on idealizations in light of the case studies presented here. Michael Weisberg 
([2007], [2013]) has recently presented a well-received taxonomy of ideali-
zations. His three-fold classification scheme includes Galilean idealizations, 
minimalist model idealizations, and multiple-model idealization (see Figure 
9). We will consider each notion in turn in light of the case studies that we 
have discussed. A Galilean idealization is a distortion used to simplify, and 
render computationally tractable, the treatment of a target system. Can the 
two-dimensional idealization in the context of anyons and fractional statistics 
be understood along these lines? We submit that it cannot. By moving from 
three to two dimensions we saw how a novel type of mathematical structure 
emerged (namely, the fundamental group for the configuration space became 
that of the braid group instead of the permutation group), allowing for the 
representation of anyons and fractional statistics. The goal of such an exercise 
was not specifically to simplify a target system (although we are happy to grant 
that simplification may be a partial goal or by-product of such an idealiza-
tion). In contrast with, for instance, the Ising model, the two-dimensional 
scenario in the anyon case was not implemented because it made the model 
computationally more tractable.

Next, minimalist model idealizations are distortions used to expose key 
causal or explanatory factors in the behavior of the target system. In the case 
of anyons, we grant that the two-dimensional idealization may be used to 
generate a potential explanation of the phenomenon of fractional statistics. 
Nevertheless, it is difficult to motivate the idea that the two-dimensional 
idealization generates the actual explanation of fractional statistics since the 
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results obtained from the configuration space framework hold for systems that 
are, strictly speaking, exactly two-dimensional. Systems that are approximately 
two-dimensional cannot manifest anyons and fractional statistics according to 
the configuration-space framework. Moreover, at no point was there a discus-
sion of any causal factors involved; in this sense, the exploration afforded by 
the two-dimensional idealization runs deeper than the search for causes and 
effects. So, again, a minimalist model idealization does not seem to be the 
kind of idealization involved in the case of anyons.

Figure 9. Weisberg’s taxonomy of idealizations.

Last, multiple-model idealizations are multiple incomplete models, de-
signed to serve different epistemic/pragmatic goals, which typically trade off 
against each other. While they ‘may retain a single, complex target, [they] 
construct multiple models for the target’ (Weisberg [2013], p. 113). Yet, as 
we saw in both the anyon case study and the connection with the Hubbard 
model, exploration may arise from using the same model and varying – not 
arbitrarily, but in a way that is clearly motivated by the course of inquiry – its 
prospective target system or phenomenon. To be sure, there is a sense in which 
performing a limiting procedure, for example varying the model’s parameters 
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so as to realize the scenario U>>W, gives rise to a sequence of models, one 
for each set of parameter values. On this understanding, any limiting case in 
scientific modeling would be associated with ‘multiple models’. But it seems to 
us that this is not the sense intended by Weisberg who, rightly, links multiple-
model idealization to competing, qualitatively distinct models, whether due 
to unavoidable tradeoffs or due to the complexity of the target system. In 
neither sense, however, is the case of the Mott-Hubbard transition adequately 
characterized by treating it as a multiple-model idealization (which is not to 
say that, in other circumstances, it cannot be used in this way; the derivation 
of the t-J model, hinted at in Section 4.2 may be a case in point). Similarly, 
in the context of anyons and fractional statistics we did not discuss multiple 
models but only one idealized two-dimensional model or scenario, and there 
was one only one goal: to show how anyons and fractional statistics may 
emerge. Indeed, this holds more generally for models aiming at ‘how-possibly’ 
explanations of unexpected phenomena (see footnote 19), where the goal is 
to demonstrate how a surprising (or perhaps merely speculative) ‘effect’ may 
possibly arise, while neither requiring that this is how it, in fact, emerges, nor 
demanding that the model be useful for other purposes.

Thus, we think that Weisberg’s ([2007], [2013]) scheme is at the very least 
incomplete, in that it does not make room for the exploratory role of idealiza-
tions and models, thereby offering a distorted view of the types of situations 
illustrated by our case studies. Moreover, we submit that similar claims can 
be made about other taxonomies of idealizations and models in the literature, 
e.g., McMullin ([1985]), Nowak ([1980]), Shaffer ([2012]), but due to space 
constraints we will leave the details to be worked out in future work. In addi-
tion, it seems to us that a deep understanding of scientific theory can only be 
gained by making room for the exploratory role of models and idealizations 
(cf. Shech ([Manuscript])). If this is the case, we will have found a substantive 
sense for which idealizations are essential to science, namely, for scientific 
understanding. Whether or not these further claims can be substantiated given 
our best accounts of scientific understanding is another issue that we leave 
for further study. Last, although we have concentrated here on case studies 
in physics, it would be interesting to see whether the notions of explorations 
discussed also arise in other sciences as well.



228 Elay Shech, Axel Gelfert

References

Aharonov, Y., D. Bohm. [1959]: ‘Significance of electromagnetic potentials in the quantum 
theory’, Physical Review, 115, pp. 485-91.

Artin, E. [1947]: ‘Theory of Braids’, Annals of Mathematics, 48(1), pp. 101-126.
Ashcroft, N.W. and Mermin, D.N. [1976]: Solid State Physics, New York: Holt, Rinehart 

and Winston.
Bailer-Jones, D., [2002]: ‘Models, metaphors and analogies’, in Machamer, P. and Silber-

stein, M. (eds.), The Blackwell Guide to the Philosophy of Science, Oxford: Blackwell, 
pp. 108–127.

Bain, J. [2013]: ‘Emergence in effective field theories’, European Journal for Philosophy of 
Science, 3, 257–273.

Bain, J. [2016]: ‘Emergence and mechanism in the fractional quantum Hall effect.’ Studies 
in History and Philosophy of Modern Physics, 56, 27–38.

Ballentine, L.E. [1998]: Quantum Mechanics: A Modern Development, Singapore: World 
Scientific.

Ballesteros, M. and Weder. R. [2009]: ‘The Aharonov–Bohm effect and Tonomura et al. 
experiments: Rigorous results’, Journal of Mathematical Physics, 50, 122108.

Ballesteros, M. and Weder. R. [2011]: ‘Aharonov–Bohm effect and high-velocity estimates 
of solutions to the Schrödinger equation’, Communications in Mathematical Physics, 
303(1), pp. 175-211.

Batterman, R. [2002]: The Devil in the Details: Asymptotic Reasoning in Explanation, Reduc-
tion, and Emergence, London: Oxford University Press.

Batterman, R. [2003]: ‘Falling cats, parallel parking, and polarized light’, Studies in History 
and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 
34, pp. 527–557.

Batterman, R. and Rice. C. [2014]: ‘Minimal Model Explanations’, Philosophy of Science, 
81(3), pp.349-376.

Bocchieri, P. and Loinger, A. [1978]: ‘Nonexistence of the Aharonov-Bohm Effect’, Nuovo 
Cimento, 47A(4), pp. 475-482.

Bokulich, A. [2008]: Re-examining the Quantum-Classical Relation: Beyond Reductionism 
and Pluralism, Cambridge: Cambridge University Press.

Bokulich, A. [2014]: ‘How the Tiger Bush Got Its Stripes: “How Possibly” vs. “How Actu-
ally” Model Explanations’, The Monist, 97(3), pp. 321-338.

Camino, F.E., Zhou, W., Goldman, V.J. [2005]: ‘Realization of a Laughlin Quasiparticle 
Interferometer: Observation of fractional statistics’, Physical Review B, 72, pp. 075342.

Chakraborty, T. and Pietilinen, P. [1995]: The Quanutm Hall Effects, Berlin: Springer.
Chambers, R.G. [1960]: ‘Shift of an Electron Interference Pattern by Enclosed Magnetic 

Flux’, Physical Review Letter, 5(1), pp.3-5. 
Elliott-Graves, A. and Weisberg, M. [2014]: ‘Idealization’, Philosophy Compass, 9(3), 

pp. 176–185.



The Exploratory Role of Idealizations and Limiting Cases in Models 229

Ezawa Z.F. [2013]: Quantum Hall Effects: Recent Theoretical and Experimental Developments, 
Singapore: World Scientific.

Earman, J. [2010]: ‘Understanding permutation invariance in quantum mechanics.’, Un-
published manuscript.

Earman, J. [2017]: ‘The Role of Idealization in the Aharonov-Bohm Effect’, Synthese (Online 
First) 1-29. https://doi.org/10.1007/s11229-017-1522-9

Fadell, E. and Neuwirth, L. [1962]: ‘Configuration Spaces’, Mathematica Scandinavica, 10, 
pp. 111-118.

Fletcher, S., Palacios, P., Ruetsche, L., and E. Shech. [Forthcoming]: Special Issue: Infinite 
Idealizations in Science in Synthese.

Fox, R. and Neuwirth, L. [1962]: ‘The Braid Groups’, Mathematica Scandinavica, 10, pp. 119-
126.

Gebhard, F. [2000]: The Mott Metal-Insulator Transition: Models and Methods, Berlin: 
Springer.

Gelfert, A. [2009]: ‘Rigorous Results, Cross-Model Justification, and the Transfer of Empiri-
cal Warrant’, Synthese, 169 (3), pp. 497–519.

Gelfert, A. [2015]: ‘Between Rigor and Reality: Many-Body Models in Condensed Matter 
Physics’, in Falkenburg, B. and Morrison, M. (eds.), Why More Is Different: Philosophi-
cal Issues in Condensed Matter Physics and Complex Systems, Heidelberg: Springer, 
pp. 201–226.

Gelfert, A. [2016]: How to Do Science with Models: A Philosophical Primer, Cham: 
Springer.

Gelfert, A. [2018]: ‘Models in Search of Targets: Exploratory Modelling and the Case of 
Turing Patterns’, in Christian, A., Hommen, D., Retzlaff, N., and Schurz, G. (eds.), 
Philosophy of Science: Between Natural Sciences, Social Sciences, and Humanities, 
Dordrecht: Springer 2018, pp. 245–271.

Guay, A., & Sartenaer, O. [2016a]: ‘A new look at emergence. Or when after is different’, 
European Journal for Philosophy of Science, 6, 297–322.

Guay, A., & Sartenaer, O. [2016b)]: ‘Emergent quasiparticles. Or how to get a rich physics 
from a sober metaphysics’, In: O. Bueno, R. Chen, & M.B. Fagan (Eds.), Individuation 
across experimental and theoretical sciences. Oxford: Oxford University Press. http://
hdl.handle.net/2078.1/179059.

Hatcher, A. [2002]: Algebraic Topology, Cambridge: Cambridge University Press. 
Healey, R. [1997]: ‘Nonlocality and the Aharonov–Bohm Effect’, Philosophy of Science, 64, 

pp. 18–41.
Healey, R. [1999]: ‘Quantum Analogies: a Reply to Maudlin’, Philosophy of Science, 66, 

pp. 440-447.
Healey, R.A. [2007]: Gauging What’s Real: The Conceptual Foundations of Contemporary 

Gauge Theories, New York: Oxford University Press. 
Hubbard, J. [1963]. ‘Electron Correlations in Narrow Energy Bands’, Proceedings of the 

Royal Society of London, 276 (1365), pp. 238–257.



230 Elay Shech, Axel Gelfert

Jones, M. [2005]: ‘Idealization and abstraction: A framework’, in Jones, M. and Cartwright, 
N. (eds.), Correcting the model: Idealization and abstraction in the sciences, Amsterdam: 
Rodopi, pp. 173-218.

Kadanoff, L.P. [2000]: Statistical Physics: Statics, Dynamics and Renormalization, Singapore: 
World Scientific.

Khare, A. [2005]: Fractional Statistics and Quantum Theory, New Jersey: World Scientific.
Ladyman, J. [2008]: ‘Idealization’, in Psillos, S. and Curd, M. (eds.), The Routledge Compan-

ion to Philosophy of Science, London and New York: Routledge, pp. 358-366.
Laidlaw, M.G. and DeWitt, C.M. [1971]: ‘Feyman Functional Integrals for System of In-

distinguishable Particles’, Physical Review D, 3, pp. 1375–1378.
Landsman, N.P. [2016]: ‘Quantization and superselection sectors III: Multiply connected 

spaces and indistinguishable particles’, Reviews in Mathematical Physics Vol. 28, No. 
09 1650019. Available via https://doi.org/10.1142/S0129055X16500197

Lederer, P. [2015]: ‘The quantum Hall effects: Philosophical approach’, Studies in History 
and Philosophy of Modern Physics, 50, 25–42.

Leinaas, J.M. and Myrheim, J. [1977]: ‘On the Theory of Identical Particles’, Nuovo Cimento, 
37B, pp. 1-23.

Martin, R. [2004]: Electronic Structure. Basic Theory and Practical Methods, Cambridge: 
Cambridge University Press.

Massimi, M. [2018]: ‘Perspectival Modeling’, Philosophy of Science, 85(3):335–359.
Maudlin, T. [1998]: ‘Discussion: Healey on the Aharonov–Bohm Effect’, Philosophy of 

Science, 65, pp. 361–368.
McMullin, E. [1985]: ‘Galilean Idealization’, Studies in the History and Philosophy of Science 

16, pp. 247–273.
Messiah, A. M. [1962]: Quantum Mechanics, New York: John Wiley & Sons.
Messiah, A.M., Greenberg, O.W. [1964]: ‘Symmetrization Postulate and its Experimental 

Foundation’, Physical Review B, 136, pp. 248-267.
Möllenstedt, G., W. Bayh. [1962]: ‘Kontinuierliche Phasenschiebung von Elektronenwellen 

im kraftfeldfreien Raum durch das magnetische Vektorpotential eines Solenoids’, 
Zeitschrift für Physik 169:263.

Morandi, G. [1992]: The Role of Topology in Classical and Quantum Mechanics, Berlin: 
Springer-Verlag.

Morgan, M. and Morrison, M. (eds) [1999]: Models as Mediators. Perspectives on Natural 
and Social Science, Cambridge: Cambridge University Press.

Mott, N. [1949]: ‘The Basis of the Electron Theory of Metals, with Special Reference to 
the Transition Metals’, Proceedings of the Physical Society. Section A, 62, pp. 416-422. 

Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P. A.M., Kouwenhoven, L.P. 
[2012]: Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor 
Nanowire Devices’, Science, 336, pp. 1003-1007.

Nayak, C., Simon, S., Stern, A., Freedman, M., Das Sarma, S. [2008]: ‘Non-Abelian anyons 
and topological quantum computation’, Reviews of Modern Physics, 80, pp. 1083.



The Exploratory Role of Idealizations and Limiting Cases in Models 231

Norton, J.D. [2012]: ‘Approximations and Idealizations: Why the Difference Matters’, Phi-
losophy of Science, 79, pp. 207–32.

Nowak, L. [1980]: The Structure of Idealization. Dordrecht: Reidel.
de Oliveira, C.R. and Pereira. M. [2008]: ‘Mathematical Justification of the Aharonov-Bohm 

Hamiltonian’, Journal of Statistical Physics, 133, pp. 1175-1184.
de Oliveira, C.R. and Pereira. M. [2010]: ‘Scattering and Self-adjoint extensions of the 

Aharonov-Bohm Hamiltonian’, Journal of Physics A: Mathematical and Theoretical 
43, pp. 1-29. 

de Oliveira, C.R. and Pereira. M. [2011]: ‘Impenetrability of Aharonov-Bohm Solenoids: 
Proof of Norm Resolvent Convergence’, Letters in Mathematical Physics, 95, pp. 41-51. 

Pachos, J.K. [2012]: Introduction to Topological Quantum Computation, New York: Cam-
bridge University Press.

Peshkin, M. and Tonomura. A. [1989]: The Aharonov-Bohm Effect. Berlin: Springer Verlag.
Psillos, S. [2011]: ‘Living with the Abstract: Realism and Models’, Synthese, 180, pp. 3-17.
Rao, S. [2001]: ‘An Anyon Primer’, Available via arXiv:hep-th/9209066 
Redhead, M. [1980]: ‘Models in Physics’, British Journal of Philosophy of Science, 31(2), 

pp. 145-163.
Ruetsche, L. [2011]: Interpreting Quantum Theories. Oxford: Oxford University Press.
Shaffer, M.J. [2012]: Counterfactuals and Scientific Realism. London: Palgrave Macmillan. 
Shech, E. [2013]: ‘What is the “Paradox of Phase Transitions?”’, Philosophy of Science, 80, 

pp. 1170–1181. 
Shech, E. [2015a]: ‘Two Approaches to Fractional Statistics in the Quantum Hall Effect: Ide-

alizations and the Curious Case of the Anyon’, Foundations of Physics, 45(9): 1063-110.
Shech, E. [2015b]: ‘Scientific Misrepresentation and Guides to Ontology: The Need for 

Representational Code and Contents’, Synthese 192(11): 3463-3485.
Shech, E. [2016]: ‘Fiction, Depiction, and the Complementarity Thesis in Art and Science’, 

The Monist, 99(3): 311-332.
Shech, Elay. [2017]: ‘Idealizations, Essential Self-Adjointness, and Minimal Model Ex-

planation in the Aharonov-Bohm Effect’, Synthese (Online First, ), 1-25. https://doi.
org/10.1007/s11229-017-1428-6

Shech, E. [2018a]: ‘Infinite idealizations in physics’, Philosophy Compass. e12514. https://
doi.org/10.1111/phc3.12514 

Shech, E. [2018b]: ‘Philosophical Issues Concerning Phase Transitions and Anyons: Emer-
gence, Reduction, and Explanatory Fictions’, Erkenntnis (Online First), 1-31. doi: 
10.1007/s10670-018-9973-z

Shech, E. [2018c]: ‘Infinitesimal Idealization, Easy Road Nominalism, and Fractional 
Quantum Statistics’, Synthese (Online First), 1-25. doi: 10.1007/s11229-018-1680-4

Shech, E. [Manuscript]: ‘Do Idealizations Afford Understanding? The Case of the AB Ef-
fect.’ Manuscript.

Spałek, J. [2007]: ‘t-J model then and now: A personal perspective from the pioneering 
times’, Available via arXiv:0706.4236 [cond-mat.str-el]



232 Elay Shech, Axel Gelfert

Stanley, H.E. [1971]: Introduction to Phase Transitions and Critical Phenomena. New York/
Oxford: Oxford University Press.

‘The Hubbard Model at Half a Century’ [2013], Editorial, Nature Physics, 9, p. 523.
Tonomura, A., Osakabe, N. , Matsuda T., Kawasaki T., Endo J.,Yano S., Yamada., H. [1982]: 

‘Observation of the Aharonov-Bohm Effect by Electron Holography’, Physical Review 
Letters, 48, pp. 1443.

Tonomura, A., Osakabe, N. , Matsuda T., Kawasaki T., Endo J.,Yano S., Yamada., H. [1986]: 
‘Evidence for Aharonov-Bohm Effect with Magnetic Field Completely Shielded from 
Electron Wave’, Physical Review Letter, 56, pp. 792-795. 

Weisberg, M. [2013]: Simulation and Similarity: Using Models to Understand the World. 
New York: Oxford University Press.

Wimsatt, W.C. [2007]: Re-Engineering Philosophy for Limited Beings: Piecewise Approxima-
tions to Reality. Cambridge, MA: Harvard University Press.

Wilczek, F. [1982]: ‘Quantum Mechanics of Fractional-Spin Particles’, Physical Review 
Letters, 49, pp. 957-959.

Wilczek, F. (ed.) [1990]: Fractional Statistics and Anyon Superconductivity. Singapore: 
World Scientific.

Wilson, A.H., [1936]: The Theory of Metals. Cambridge: Cambridge University Press.
Yi, S.W. [2002]: ‘The Nature of Model-based Understanding in Condensed Matter Physics’, 

Mind & Society, 3(1), pp. 81-91.

Elay Shech, 
Department of Philosophy
Auburn University
eshech@auburn.edu

Axel Gelfert, 
Institute of History and Philosophy of Science, Technology, and Literature
Technische Universität Berlin
axel@gelfert.net


	Bez nazwy



